
On the complexity of isomorphism in finite group theory

and symbolic dynamics

by

Tyler Schrock

B.S., Troy University, 2013

M.A., University Colorado Boulder, 2017

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Mathematics

2019

This thesis entitled:
On the complexity of isomorphism in finite group theory and symbolic dynamics

written by Tyler Schrock
has been approved for the Department of Mathematics

Prof. Joshua A. Grochow

Prof. Nathaniel Thiem

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

iii

Schrock, Tyler (Ph.D., Mathematics)

On the complexity of isomorphism in finite group theory and symbolic dynamics

Thesis directed by Prof. Joshua A. Grochow

This thesis looks at the complexity of isomorphism in two fairly distinct areas of mathematics.

First, we consider several computational problems related to sub-shifts of finite type and, in

particular, conjugacy restricted to k-block codes: verifying a proposed k-block conjugacy, deciding

if two shifts admit a k-block conjugacy, reducing the representation size of a shift via a k-block

conjugacy, and recognizing if a sofic shift is a shift of finite type. We give a polynomial-time

algorithm for verification, show GI-hardness for deciding conjugacy, show NP-hardness for reducing

representation size, and give a polynomial-time algorithm for recognizing shifts of finite type. Our

approach focuses on 1-block conjugacies between vertex shifts, from which we generalize to k-block

conjugacies and to edge shifts. We also highlight several open problems.

Second, we consider isomorphism between quotients of centrally indecomposible genus 2 p-

groups. We show isomorphism between quotients of such groups by non-central subgroups can be

determined in polynomial time. The centrally indecomposible genus 2 groups split into two cases:

flat and sloped [20]. We give a polynomial-time algorithm which correctly decides isomorphism

between quotients of the flat genus 2 groups H[
1(Fq) by central subgroups whenever the algorithm

succeeds; we believe the algorithm always succeeds and have tested it on tens of millions of random

examples. We again highlight several open problems.

iv

Acknowledgements

First, I thank my advisors1 Josh Grochow, Raf Frongillo, and Nat Thiem. I will forever be

grateful for their guidance, support, and patience.

I also thank the rest of my thesis committee, Robin Deeley and Peter Mayr, for their time

and editorial support.

Thanks to Matt Miller, Lara Pudwell, Ken Roblee, and Vitaly Voloshin for going beyond the

call of duty to foster my interest of mathematics. Without their challenging and encouragement, I

never would have attempted grad school.

Thanks to my Great Exchange family and the beauty of the Southwest for giving me reasons

to stay in Boulder when grad school sucked. Thanks to the National Park Service2 for protecting

many precious areas of our country for the enjoyment of all generations. Thanks to Brandon

Sanderson3 for renewing my love of reading while in grad school and Terry Pratchett for giving

me an appreciation of footnotes.4

Finally, I thank the many friends and family members who have supported and encouraged

me throughout grad school. I especially thank my parents for believing I could do this even when

I didn’t believe it myself.

1 official or not
2 now and forever America’s best idea
3 Life before death, strength before weakness, journey before destination.
4 GNU Terry Pratchett

Contents

Chapter

1 Introduction 1

1.1 A non-technical introduction to isomorphism . 1

1.2 Summary of results . 2

1.2.1 Symbolic dynamics . 2

1.2.2 Finite group theory . 5

1.3 Organization . 9

2 Preliminaries 10

2.1 Graph theory . 10

2.2 Computational complexity . 13

2.2.1 Asymptotic complexity . 13

2.2.2 Complexity classes . 15

2.2.3 Reductions and C-hard problems . 20

2.2.4 Decidability . 21

2.3 Symbolic dynamics . 22

2.4 Tensors . 29

2.4.1 Introduction . 29

2.4.2 Valence 3 tensors . 30

2.4.3 Symmetric and alternating tensors . 32

vi

2.4.4 Writing a tensor over Fq as a tensor over Fp 33

2.5 Finite group theory . 34

2.5.1 Background . 34

2.5.2 A brief introduction to genus 2 groups . 35

2.5.3 Group representation styles . 38

3 Conjugacy and recognition of shifts of finite type 41

3.1 Overview . 41

3.2 Verification: testing a k-block map for conjugacy . 43

3.2.1 Irreducible case . 43

3.2.2 Reducible case . 47

3.3 Deciding k-block conjugacy . 52

3.4 Reducing representation size . 57

3.5 Edge shifts . 67

3.6 Recognizing shifts of finite type . 69

3.7 Discussion and future work . 73

3.8 Algorithms . 76

4 Determining isomorphism of quotients of genus 2 groups 80

4.1 Overview . 80

4.2 Genus 2 groups . 80

4.2.1 Baer’s correspondence . 81

4.2.2 Genus of a group . 84

4.2.3 Classification of indecomposible genus 2 groups 85

4.3 Quotients of genus 2 groups by non-central subgroups 86

4.4 Quotients of genus 2 flat groups by central subgroups 90

4.4.1 Recovering the genus 2 group . 90

4.4.2 Writing Bi(G) as potential Fq blocks . 92

vii

4.4.3 Realizing G as an explicit quotient H[
m(Fq)/N 103

4.4.4 Determining if H[
m(Fq)/N1

∼= H[
m(Fq)/N2 . 107

4.5 Future work . 108

Bibliography 110

viii

Tables

Table

3.1 Summary of results and open questions, for vertex and edge shifts. Question marks

denote conjectures, and BV refers to the verification problem (§3.2). The asterisk

(*) denotes a subtlety in edge shift representations: the k-block conjugacy problem

is in NP when the the representation size is considered to be the number of edges

(i.e., a unary representation), but membership in NP is not clear when the shift is

given as an adjacency matrix (i.e., a binary representation). 73

Figures

Figure

1.1 (G) An example of a directed graph representing a vertex shift. (H) An example of

a directed graph representing an edge shift. 3

2.1 Two undirected graphs which are isomorphic via the map vi 7→ ui. 10

2.2 Three directed graphs, where graphs F and G are isomorphic via the map vi 7→ ui. . 11

2.3 Two examples of multigraphs. The edges of G are not labeled, so it is impossible to

specify walks on G. The edges of H are labeled, so it is possible to specify walks on

H. In particular, the walks e5e1e6 and e5e2e7 both start at u3 and end at u1. 12

2.4 Three examples of vertex shifts. XG and XH are conjugate via the 1-block code

mapping 1, 2 7→ 1, 0 7→ 0 as 1 and 2 can be amalgamated in G to form H. 24

2.5 Four examples of edge shifts. XG′ and XH′ are conjugate as G′ can be transformed

into H ′ by amalgamating vertices v1 and v2. 24

2.6 (a) A minimal example of two vertex shifts which are conjugate by a 1-block code

but not by a sequence of amalgamations. (b) The conjugacy, demonstrated via a

splitting followed by four amalgamations. 29

2.7 An example of the multiplication tensor over F53 = F5[x]/(x3 − 2x − 2) being em-

bedding into F5 and then sliced front to back. 31

x

2.8 The current complexity landscape for GpI. The reductions represented by unlabeled

solid arrows are obvious special cases. The reduction represented by the dashed arrow

seems to be well-known by the experts but might not be present in the literature. (*)

Black box representations are officially only in the promise hierarchy; to get around

this fact, one can consider groups of black box type instead [21]. Isomorphism of

groups of black box type is in NP rather than just ΣP
2 40

3.1 Counterexamples showing various statements which hold in the irreducible case fail

in the reducible case. Note that all four shifts have the same topological entropy,

h(X) = 1
4 . (a) A 1-block code between two reducible shifts which restricts to con-

jugacies between the irreducible components (and hence Φc is a bijection) but is

not surjective. (b) A 1-block code between two reducible shifts which restricts to

conjugacies between the irreducible components but is not injective. 48

3.2 The vertex gadgets for (a) each vertex v in G, and (b) each vertex u in H. 54

3.3 Given Φ′ or Φ, one can construct the other such that this diagram commutes. 57

3.4 A graph which satisfies the structure property. 58

3.5 A minimal counterexample to the conjecture that any 1-block conjugacy Φ∞ : XG →

XH between graphs with the structure property can be realized as a sequence of only

amalgamations. 60

3.6 The weight widget weight[A∗, B∗] with K = 4. 61

3.7 The graph constructed in Theorem 3.4.9 (without any weight widgets attached) for

the HittingSet instance with S = {{u1, u2}, {u2, u3}}. 65

3.8 (a) The edge gadget for each pre-image graph. (b) The edge gadget for each image

graph. 68

3.9 (a) A reducible presentation of the even shift which is right-resolving. (b) An ir-

reducible presentation of the even shift which is right-resolving. (c) An irreducible

presentation of the even shift which is not right-resolving. 70

xi

Algorithms

Algorithm

3.1 Determine if Φc is injective . 76

3.2 Determine if Φ∞ between irreducible graphs is a conjugacy 77

3.3 Turn every sink component into a single vertex . 78

3.4 Turn every source component into a single vertex . 79

3.5 Determine if Φ∞ between reducible graphs is a conjugacy 79

4.1 Convert BiFp(G) to block form . 102

Chapter 1

Introduction

Generally speaking, this thesis looks at the complexity of determining isomorphism in two

fairly distinct fields of mathematics.

1.1 A non-technical introduction to isomorphism

Before introducing our main problems of study, we first introduce isomorphism (What is it

and why should we study it?) via language accessible to a non-mathematical audience.

Suppose we live in a world where two distinct temperature systems exist, say ◦F and ◦C.

Even more, maybe we know a lot of information about ◦F for the context of what feels hot/cold,

how to cook different foods, and other situations encountered in daily life by the average American.

At the same time, maybe we know a lot of information about ◦C in the context of science. Since

both ◦F and ◦C are measurements of the same thing, there should be a way to convert between

them without losing any information. That is, given a recipe (or anything else) written in ◦F, is

there a way to rewrite the recipe to be written in ◦C for use in a science experiment such that

someone else could convert back to ◦F to get the exact same starting recipe? In fact, there is such

a conversion for temperature (using the formula ◦F = 9
5

◦
C + 32), so ◦F and ◦C are essentially the

same, even though, on the surface, they appear quite different. This extent of sameness is called

isomorphism, where etymologically, “iso” means “same” and “morph[ic/ism]” means “shape.”

In this situation, we say the temperature scales of ◦F and ◦C are isomorphic while the

function doing the conversion (◦F = 9
5

◦
C + 32) is an isomorphism. Once we find an isomorphism

2

between two things, we can transfer knowledge about one to other in a perfect (lossless) way. In

math, different mathematical “objects” appear in many contexts. One such object is called a group.

If it happens that a group appears while studying something in Physics and another group appears

while studying something in Chemistry, it would be nice to know if the two groups are isomorphic

(the “same”). If the two groups are isomorphic, there is a good chance the two topics are related

even if they don’t appear to be at first glance, and we might be able to use the isomorphism between

the groups to transfer Physics knowledge to the Chemistry situation (and vice versa).

Unfortunately, finding an isomorphism between two things can be very difficult. And some-

times harder is the problem of showing the absence of any isomorphism between two things. For

an example of non-isomorphism, consider the problem of translating between languages. Every

language has the ability to communicate ideas, so it might seem like all languages are isomorphic

to one another. However, there is essentially never a way to translate between languages without

losing information. For a specific example, consider the problem of translating English to ancient

Japanese. Separate words differentiating the colors blue and green in Japanese is a fairly recent

creation; historically, both colors were described by the word ao (青). It is possible to translate from

English to ancient Japanese, but the translation loses information. To see this, note that translat-

ing perfectly back to the original English message given only the translated Japanese message is

impossible if the original English message included both the words green and blue. Thus there can

be no isomorphism between English messages and ancient Japanese messages.

1.2 Summary of results

Stepping up a level in technicality, we now introduce the problems of study in this thesis.

1.2.1 Symbolic dynamics

In Chapter 3, we look at isomorphism in the field of symbolic dynamics. Specifically, we

study isomorphism of shifts of finite type, where the specific type of isomorphism we are interested

in is that of topological conjugacy. Leaving the technical definition of a shift of finite type for

3
H

• •

••

g

a

b

c
d e

f

G

1 2

3 4

Figure 1.1: (G) An example of a directed graph representing a vertex shift. (H) An example of a
directed graph representing an edge shift.

§2.3, we instead note that two ways to present shifts of finite type are via vertex shifts and edge

shifts, which we now describe.

Given a directed graph G, label the vertices distinctly (or edges for the case of an edge shift).

See Figure 1.1 for an example of both a vertex shift and an edge shift. Consider something (say

a particle) which lives on the vertices of the graph. As time advances by one step, the particle

moves forward on any edge leaving its current vertex. Assuming the particle lived infinitely in the

past and will live infinitely in the future, every walk on G indexed by Z corresponds to a possible

trajectory of the particle. The vertex shift associated to G, denoted XG, is the collection of all

possible walks on G indexed by Z and corresponds to all possible trajectories of a particle living

on G. Similarly, the edge shift associated to H where the edges of H are labeled as in Figure 1.1,

denoted Xe
H , is the collection of all possible walks on H indexed by Z.

Given two vertex shifts XG, XH , we can map a point p in XG (a walk on G indexed by Z)

to a point in XH by looking at the block of vertices p[i−m,i+a] between times i −m and i + a in

the walk and mapping that block to a single vertex qi in H. Letting k = m+ a+ 1, we call such a

mapping a k-block code. In the case of 1-block codes, a function from XG to XH is evaluated on

the point p by looking at every character (vertex) in p and mapping it to a new character (vertex)

in H. If it happens that such a mapping from XG to XH is bijective (on walks indexed by Z), we

say the mapping is a conjugacy. If XG, XH are conjugate, we write XG
∼= XH .

Motivating our study is the following question, which has been studied since at least 1973 [74]

4

(but almost certainly longer) and is probably the biggest open question in symbolic dynamics [18].

Given two shifts of finite type X,Y , are X,Y conjugate? Whether or not this question is decidable

by an algorithm is still an open problem. As a possible step toward showing the decidability of this

problem, we first show the question of verifying a proposed conjugacy is in P.

Theorem A (Corollary 3.2.2.4, Theorem 3.5.1). Given two shifts of finite type X,Y with alphabets

AX ,AY as either vertex shifts or edge shifts and a proposed k-block conjugacy Φ∞ : X → Y , deciding

if Φ∞ is a conjugacy can be determined in O(|AX |4k) time.

As a consequence of this theorem, we have that one way to show the conjugacy problem is

decidable is to show one can restrict attention to only a finite number of possible conjugacies between

two shifts of finite type. Turning to the conjugacy problem itself, we do not resolve its decidability;

rather we show it is unlikely to have an efficient solution without employing deep techniques, by

showing the conjugacy problem is at least as hard as the (in)famous Graph Isomorphism problem.

Theorem B (Corollary 3.3.7, Theorem 3.5.3). Given two shifts of finite type X,Y as either vertex

shifts or edge shifts, deciding if there is a k-block conjugacy from X to Y is GI-hard for each k.

Then we look to applications of shifts of finite type. Vertex shifts appear while studying

many things (e.g., Markov partitions), so finding smaller representations of a given vertex shift

would improve practical algorithms. In the case of Markov partitions specifically, reducing the size

of a given vertex shift by a 1-block conjugacy is especially important. We show that, unfortunately,

finding optimal solutions to this problem is NP-complete.

Theorem C (Theorem 3.4.9). Given a vertex shift XG and an integer `, deciding if there is a vertex

shift XH where |VH | = |VG| − ` such that XG, XH are conjugate via a 1-block code is NP-complete.

Then we look at the more general object of sofic shifts, which strictly generalize shifts of

finite type. Sofic shifts arise in practice, so recognizing when a sofic shift is a shift of finite type

is a natural question. Even more, the theory of sofic shifts is less developed than that of shifts

of finite type; it would be useful to recognize when a sofic shift is also of finite type, so the more

5

developed theory can be applied. Using methods similar to those used to prove Theorem A, we

find an efficient algorithm to answer the question: Given a nice enough presentation of a sofic shift

X, is X a shift of finite type? For our result, we need a presentation which is irreducible and

right-resolving. While a right-resolving irreducible presentation exists for every irreducible sofic

shift, finding such a presentation (given a less nice presentation) may require exponential blow-up

in size using the current known algorithms.

Theorem D (Theorem 3.6.4). Given an irreducible right-resolving presentation of a sofic shift X

as a labeled multigraph, deciding if X is a shift of finite type can be determined in O(n4) time where

n is the number of edges that are labeled.

1.2.2 Finite group theory

The other main problem we consider is the group isomorphism problem, where we look

into a subclass of p-groups; p-groups in general are widely believed to be the hardest cases of

group isomorphism. Let GpI be the problem of determining isomorphism between two groups

given by generating sets (e.g., as matrices over finite fields) and GpI-CayleyTable be the problem

of determining isomorphism between two groups given by Cayley tables (see §2.5.3 for a more

extended discussion of ways to represent groups in a computer and the known complexity bounds

on the various representation choices). Also, let GI be the problem of determining isomorphism

between two graphs. As GI is a common candidate for an NP-intermediate problem and graphs

have many practical algorithms, deciding if GI is in P is considered to be one of the most important

open question in complexity theory [42].

Unfortunately, graphs are very unstructured, which can make testing isomorphism difficult.

Groups, in comparison, have lots of structure. Regarding the complexity of these problems, it is

known that

GpI-CayleyTable ≤Pm GI ≤Pm GpI,

where the fact that GpI-CayleyTable ≤Pm GI is known by [57] and the fact that GI ≤Pm GpI seems to

6

be well-known among the experts (for a written reference, see [29]). As GI is sandwiched between

two variants of the group isomorphism problem, graph isomorphism and group isomorphism are

intimately related. Even more, the known bounds on the complexities of the three problems are

very similar. In Chapter 4, we will focus on p-groups of exponent p and nilpotence class 2; let

GpI-Class2 be GpI restricted to these groups (GpI-Class2 seems to be the main bottleneck to solving

GpI efficiently, but the only known formal reduction is from p-groups of exponent p and class <

p [29]). Provided the generating sets for GpI-Class2 are sets of matrices (see §2.5.3 for other options),

we know GpI-CayleyTable, GI, GpI-Class2 ∈ NP∩ coAM [25, 27, 29] (see §2.2.2 for an introduction to

the complexity classes relevant to this thesis), and a similar sandwiching of GI still holds. Thus any

of GpI-CayleyTable, GI, GpI-Class2 being NP-complete implies the polynomial hierarchy collapses [4,

9, 16]. Even more, using standard derandomization assumptions, coAM = coNP [58]; that is,

GpI-CayleyTable, GI, GpI-Class2 ∈ NP ∩ coNP under common assumptions. Furthermore, the best

known runtimes for algorithms solving any one of GpI-CayleyTable, GI, GpI are all quasi-polynomial

in the order of the object (group or graph). While there is some evidence that GpI-CayleyTable is in P

while GI and GpI are not in P (in fact, Babai expressed this idea in [5]) as GpI-CayleyTable for solvable

groups is in NP ∩ coNP under weaker assumptions than mentioned above [3] and there is a known

quasi-polynomial algorithm for GpI-CayleyTable [56]1 which is much simpler than any of the known

quasi-polynomial algorithms for GI or GpI, the best known algorithm for any of the three problems

runs in |G|O((log |G|)c)-time. In particular, the best known algorithm for GpI-CayleyTable runs in

|G|Θ(log |G|)-time, where the coefficient of the exponent has only recently been reduced to 1
2 [62].

The best known algorithm for GpI also runs in |G|Θ(log |G|)-time by [78], which is based on many

recent advances [45, 7, 60, 73, 49, 10, 8, 63, 62, 20, 28, 34, 32, 24, 17], so having the exponentially

larger input size of a full Cayley table is not known to improve the asymptotic runtime of testing

isomorphism of groups. Finally, for GI, the best known algorithm runs in |V |Θ((log |V |)2)-time. This

algorithm was first announced by Babai in [6] after which Helfgott found a flaw and the claim

was withdrawn. Since then, the algorithm has been corrected by Babai (with an update posted

1 Miller credits Tarjan with this algorithm.

7

on Babai’s personal website) and confirmed by Helfgott. Babai’s arXiv posting has not yet been

updated, but Helfgott, et al. show this updated result in [31].

The subclass of p-groups studied in Chapter 4 are quotients of genus 2 groups. Roughly

speaking, a p-group G of exponent p and nilpotence class 2 is genus 2 if (1) G is defined over some

field F, (2) F is the largest field G can be defined over, and (3) G′ is 2 dimensional over F (see §4.2

for a technical definition). For an example, the group H[
m(Fq) below is a genus 2 group.

H[
m(Fq) =

I2

e1 · · · em 0

0 e1 · · · em

z1

z2

Im+1

f0

...

fm

1

: ei, fi, zi ∈ Fq

Note H[

m(Fq) could be written over Fp instead of Fq. If this were done, the dimension of G′ over

Fp would be larger than 2, so G would appear to have genus larger than 2. However, the technical

definition of genus is nuanced enough to disallow this (see Example 2.5.2.3 for an example of a

genus 2 group which at first glance appears to be genus 4).

Specifically, in Chapter 4, we ask the question: Given two groups G,H which are known to

be quotients of genus 2 groups, is G ∼= H?

Regarding the focus on quotients of genus 2 groups, we note that isomorphism of both genus

1 groups [49] and genus 2 groups [20] can be decided efficiently. Unfortunately, these results rely

on classifying the centrally indecomposible groups of low genus, so extending the strategy to genus

3 groups involves solving a wild problem [13], which therefore seems like not a promising approach

to higher genus. Considering the problem of quotient groups, a group which is a quotient of a

genus g group often has genus larger than g. Despite this, determining isomorphism of quotients

of genus 1 group is solvable in polynomial time [49]; however, the known algorithm also relies on

a classification of the centrally indecomposible genus 1 groups, so, again, extending these ideas

probably fails for quotients of genus 3 groups. (For each of these results, isomorphism is solvable

8

in polynomial time in the size of the generators of G, i.e., O(poly(log |G|)).) Thus, we consider the

final piece which may be approachable by current strategies: quotients of genus 2 groups.

To answer our question, we look to the strategy developed to determine isomorphism between

quotients of genus 1 groups in [49]. The rough outline of this strategy is as follows. First, any non-

abelian quotient of a genus 1 group is shown to be a quotient by a central subgroup. Second,

given a non-abelian quotient G of a genus 1 group H, the field H is genus 1 over is shown to be

recoverable via linear algebra involving only G. Then G can be written explicitly as a quotient

Ĥ/N where the genus 1 group Ĥ is canonically constructed from G but the normal subgroup N is

not canonical. Third, given two groups G1, G2 which are written as G1
∼= Ĥ/N1 and G1

∼= Ĥ/N2

in step two, G1
∼= G2 if and only if there exists ϕ ∈ Aut(Ĥ) such that ϕ(N1) = N2.

Unfortunately, this strategy fails to generalize in several key ways. First, there exist non-

abelian quotients of genus 2 groups by non-central subgroups. In these cases, we show a reduction

to the case of quotients of genus 1 groups. Second, attempting to use the same strategy to write a

given group G as a quotient H/N of a canonical genus 2 groups seems to fail at every turn. In the

genus 1 case, the field over which a group is genus 1 can be recovered from each of its non-abelian

quotients by looking at the center of the quotient’s adjoint; this is not true in the genus 2 case.

Also, in the genus 1 case, knowing the field over which the group is genus 1 and the order of the

genus 1 group restricts the possible genus 1 groups to a single option; this also is not true in the

genus 2 case. We develop a new method to recover the field. Then we solve the isomorphism

problem for some of the cases where the genus 2 group is uniquely given by the field and the order

of the group.

Our first main result shows an efficient algorithm to decide isomorphism in quotients of genus

2 groups when the normal subgroup is not central.

Theorem E (Theorem 4.3.5). Given a group G which is quotient of centrally indecomposible genus

2 group by a non-central normal subgroup, G is also a quotient of a genus 1 group. In particular,

combined with [49], we conclude that isomorphism of such groups can be decided in polynomial time.

9

Then we look at the general problem of isomorphism between quotients of genus 2 groups.

While we don’t find a full isomorphism test, we make major steps toward one of the two cases of

indecomposible genus 2 groups.

Theorem F (Conjecture 4.4.4.5). If Conjectures 4.4.2.5, and 4.4.4.1 are true, then the algorithm

of §4.4 decides in polynomial time the isomorphism of quotients of the centrally indecomposible

genus 2 group H[
1(Fpn) by central subgroups.

Regarding the missing pieces conjectured to be true, Conjecture 4.4.2.5 seems to be true

based on tens of millions of random examples, and while a few details need verified, we believe

Conjecture 4.4.4.1 is true via a slight generalization of the proof in [49] for the more general case

of any centrally indecomposible genus 2 group.

1.3 Organization

Chapter 2 gives technical background information for the later chapters. New results begin

in Chapter 3, where we investigate various problems related to the conjugacy of shifts of finite

type. Then we conclude in Chapter 4 by looking at isomorphism among groups with are quotients

of genus 2 groups.

Chapter 2

Preliminaries

In this chapter, we introduce necessary definitions, notation, and background for Chapter 3

and Chapter 4.

2.1 Graph theory

We begin with basic graph-theoretic definitions and conventions. An undirected graph

Gu = (V,E) is a set of vertices V along with a set of edges E where each e ∈ E is an unordered

pair of vertices (possibly indistinct) from V . When multiple graphs are in play, we will write

Gu = (VG, EG) to clarify which graphs the vertices or edges correspond to. Pictorially, a graph is

represented by drawing each vertex as a node and drawing each edges as a line starting at one edge

and ending at the other. See Figure 2.1 for example graphs.

G = (VG, EG) H = (VH , EH)

v1

v2

v3v4

v5

v6

v7

v8v9

v10

u1

u2

u3

u4

u9u7

u10

u8

u6

u5

Figure 2.1: Two undirected graphs which are isomorphic via the map vi 7→ ui.

11
F = (VF , EF) G = (VG, EG) H = (VH , EH)

v1 v2

v3v4

u1

u2

u3 u4 w1 w2

w3

Figure 2.2: Three directed graphs, where graphs F and G are isomorphic via the map vi 7→ ui.

For a graph G = (V,E), a walk on G is a list of vertices v1v2 · · · vn such that {vi, vi+1} ∈ E

for 1 ≤ i < n. For example, in G in Figure 2.1, the path v1v2v7v9 is a walk on G while v4v5v3 is

not a walk on G, since {v5, v3} /∈ VG. Given a graph G = (V,E), a cycle of length n will mean

a sequence v1v2 · · · vn ∈ V such that v1v2 · · · vnv1 is a walk on G. We define Cn(G) to be the set

of cycles of length n in G = (V,E). Note that cycles in our definition have a designated starting

point, e.g., if v1v2v3 is a cycle in G, then v1v2v3, v2v3v1, v3v1v2 are three distinct cycles in C3(G).

Two graph G,H are isomorphic if there is a bijective mapping ϕ : VG → VH such that ϕ

preserves the edge relation; that is, ϕ : VG → VH is an isomorphism from G to H if ϕ is a bijection

and {u, v} ∈ EG if and only if {ϕ(u), ϕ(v)} ∈ EH . If G,H are isomorphic, we write G ∼= H. See

Figure 2.1 for an example of two graphs which are isomorphic via the isomorphism ϕ : VG → VH

defined by ϕ(vi) = ui. Given two graphs G,H, the complexity of deciding if G ∼= H is a major

open problem in mathematics [42, 6].

Related, a directed graph G = (V,E) is a set of vertices V along with a set of edges

E ⊆ V × V . For an edge e = (v1, v2) ∈ E, the vertex v1 is called the initial vertex of e and v2

is called the terminal vertex of e. Pictorially, a directed graph is represented by drawing each

vertex as a node and each edge (v1, v2) as an arrow starting at v1 and ending at v2. See Figure 2.2

for examples of directed graphs.

For a directed graph G = (V,E) and a vertex v ∈ V , we define N+(v) = {u ∈ V : (v, u) ∈ E}

and N−(v) = {u ∈ V : (u, v) ∈ E} to be the set of out-neighbors and in-neighbors of v,

respectively. For an example, consider H in Figure 2.2: N+(w3) = {w1, w3} and N−(w3) =

12
G = (VG, EG) H = (VH , EH)

v1

v2 v3 u2 u3

u1

e5

e3e2

e6

e1 e4

e7

Figure 2.3: Two examples of multigraphs. The edges of G are not labeled, so it is impossible
to specify walks on G. The edges of H are labeled, so it is possible to specify walks on H. In
particular, the walks e5e1e6 and e5e2e7 both start at u3 and end at u1.

{w2, w3}. Similar to undirected graphs a walk on the directed graph G is a listing of vertices

v1v2 · · · vn such that (vi, vi+1) ∈ E for 1 ≤ i < n. As an example again in graph H, the path

w3w3w1w2 is a walk on H but w3w2w1 is not a walk (as the edges have a direction). Then cycles

and the set Cn(G) are defined identically to the undirected case.

Again, as in the undirected case, two graph G,H are isomorphic if there is a bijective

mapping ϕ : VG → VH such that ϕ preserves the edge relation; that is, ϕ : VG → VH is an

isomorphism from G to H is ϕ is a bijection and (u, v) ∈ EG if and only if (ϕ(u), ϕ(v)) ∈ EH .

See Figure 2.2 for an example where ϕ : VF → VG is an isomorphism defined by ϕ(vi) = ui while

H is isomorphic to neither F nor G.

Generalizing directed graphs to allow E to be a multiset, we get directed multigraphs.

As a subtle difference from directed graphs, note that it is necessary to name all the edges in a

multigraph in order to refer to a particular walk or cycle. See Figure 2.3 for examples of multigraphs

and walks on multigraphs.

Consider any directed graph (or multigraph) G = (V,E). G is strongly connected if for

every pair of vertices (u, v), there is a walk in G starting at u and ending at v. For example, in

Figure 2.2, the graphs F,G are strongly connected while H is not (as there is no walk starting at

w1 and ending at w3). And in Figure 2.3, the multigraph H is strongly connected while G is not.

We note that while undirected graphs are used in §2.2 for examples and to define the com-

plexity class GI, the main usage of graphs in this thesis are in Chapter 3 where all graphs are

13

directed. Furthermore, there also are undirected multigraphs; however, all multigraphs in this

thesis are directed.

2.2 Computational complexity

This section assumes a basic knowledge of Turing machines and other computational models.

For an introduction, see any introductory textbook in the field such as the one by Sipser [69].

2.2.1 Asymptotic complexity

Consider the following algorithm A, which sorts a list of numbers.1 A says to

(1) Step through the portion of the list which is not yet sorted.

(2) Find the lowest number in the unsorted portion of the list.

(3) Switch the number found in step (2) with the first element of the list which hasn’t been

marked as sorted.

(4) Mark the first unsorted position as sorted.

(5) Repeat until all list positions have been marked as sorted.

We would like to give some measurement of how efficient A is in terms of time and storage

spaced used. Before we can, we note that a few things are clear. The number of steps in the

algorithm (and hence the time used) depends on both the size of the list given to the algorithm

as well as the particular details of the computational model implementing A. Also, the space used

depends on how the data is encoded and whether/how the input’s space is counted.

Looking ahead, we note that choice of computational model will not affect the definitions of

complexity classes such as P, NP, or PSPACE, so we establish the following conventions. When

working with Turing machines, we use a two tape Turing machine with a read-only input tape where

the input size is not counted in the space used. However, for general algorithm analysis, we adopt

1 A happens to be selection sort.

14

the RAM model. In the RAM model, basic arithmetic and logical operators (adding, multiplying,

conditional branching, checking equality, etc.) take exactly one time step. Additionally, memory

can be accessed randomly in an efficient manner. That is, reading the data stored at index 18

followed by reading the data stored at index 3 takes exactly 2 time steps.

Let T (n) be the maximum number of steps needed to complete this algorithm on any list of

length n. Doing the consecutive iterations unintelligently causes us to look at each of the n numbers

of each of the n passes through the list. At each index, we perform at most three operations by first

checking if the index has been marked as sorted. If not, we compare the number with the lowest

number seen so far and potentially update the index of minimum value for the pass. This takes at

most 3n2 steps. And at the end of each pass through the list we perform one swap of values with

takes 3 steps followed by marking one index as sorted. Overall, we have a runtime no worse than

T1(n) = 3n2 + 4n.

Noting that we don’t have to check if an index is marked as sorted if we instead kept track

of which pass we were on (and hence where to start in the list), we could reduce the runtime to

T2(n) = 2 · (n+1)n
2 + 4n = n2 + 5n. However, no matter what choices we make to improve the

implementation of our algorithm, the runtime will always be quadratic. Because of this, we drop

constants and lower order terms by writing that for the runtime T (n) of algorithm A, we have

T (n) = O(n2) (said “T (n) is big oh of n2”). More generally, for any two functions f, g : N →

R+, if there exist positive constants M,n0 such that n > n0 implies f(n) ≤ Mg(n), we write

f(n) = O(g(n)) and say g(n) is an asymptotic upper bound for f(n). In practice and for most

nice functions, there is a limit test which typically suffices to show if f(n) = O(g(n)). Namely,

f(n) = O(g(n)) whenever lim
n→∞

f(n)
g(n) <∞.

Relatedly, we have f(n) = Ω(g(n)) (said “f(n) is big omega of g(n)”) if g(n) = O(f(n)).

Also, f(n) = Θ(g(n)) (said “f(n) is theta of g(n)”) if f(n) = O(g(n)) and f(n) = Ω(g(n)). Big

Ω notation and Θ notation also have limit tests. Provided the appropriate limit exists, we have

f(n) = Ω(g(n)) if lim
n→∞

g(n)
f(n) <∞ and f(n) = Θ(g(n)) if 0 < lim

n→∞
f(n)
g(n) <∞.

While big O notation may seem lazy and imprecise, it also often too fine of a measurement

15

of time complexity. We would like to introduce a fairly robust notion of what it means for an

algorithm to be efficient. As hinted at earlier, the big O time complexity of an algorithm depends

on the model of computation (RAM model, multi-tape Turning machine, one-tape Turing machine,

etc.), so defining an algorithm to be efficient if it runs in O(f(n)) for some function f will not

be a robust definition unless we establish a particular model of computation. Even if we were

willing to restrict to a certain model of computation, we have the issue that an algorithm with an

efficient number of steps which calls another efficient algorithm as a subroutine could end up being

inefficient. Even more, it is difficult to impossible to justify why an algorithm running in O(f(n))

time is efficient while an algorithm running in O(f(n)1+ε) is inefficient.

While these challenges to defining efficiency based on a particular big O run time are not

insurmountable, they do provide some motivation for considering more robust classes of complexity.

2.2.2 Complexity classes

Rather than continuing to look at all algorithms, we, as is typical, choose to consider only

decision problems. A decision problem is any yes/no question to be determined by a computer

such as

• TRAVELING-SALESMAN: Given a graph G and an integer k, is there a walk on G of length

less than or equal to k which passes through every vertex?

• EUL-PATH: Given a graph, is there a walk which passes over every edge exactly once?

• HAM-PATH: Given a graph, is there a walk which passes through every vertex exactly

once?

• PRIMES: Given a number n, is n prime?

• GI: Given two graphs G,H, is G isomorphic to H?

To some extent decision problems are simply a convenient formality; however, given the ability

to solve a decision problem in O(f(n)) time, one can typically solve the more general search problem

16

(if it exists) with only a small penalty in runtime. For example, consider TRAVELING-SALESMAN,

and suppose we can solve TRAVELING-SALESMAN in O(f(|V |)) time. Then we can solve the variant

of TRAVELING-SALESMAN asking for the smallest walk reaching every vertex in O(f(|V |) log(m)),

where m is the length of the shortest such walk by using doubling binary search [14]. Furthermore,

in our more robust complexity classes below, this small added penalty in runtime will not affect a

problem’s complexity classification.

Given a decision problem D, the time complexity of D is defined to be the running time of the

fastest worst-case of any algorithm which answers D. The complexity class P (called polynomial

time) is defined to consist of the decision problems which are solvable by deterministic algorithms

whose runtimes are polynomial functions. That is, P =
⋃
c∈N

DTIME(O(nc)). We claim the class P is

fairly good definition of problems which can be solved efficiently. Conveniently, a problem being in

P does not depend on the model of computation. Also, P is closed under calls to subroutines in P.

But still we should ask: why P when there are problems in P which have cannot be solved faster

than O(n100) time [69, Theorem 9.10] and a O(n100) algorithm is definitely not efficient enough for

real life use? Thankfully naturally occurring problems in P requiring O(nk) time for large k are

rare. Also, for a problem to be in P, the algorithm must do something significantly more intelligent

than brute force, so being in P is a yardstick for our understanding of the structure of a problem.

The complexity class NP (called nondeterministic polynomial time) is the collection of

decision problems which are solvable in polynomial time by nondeterministic algorithms. Rather

than introduce nondeterminism, we instead note that an equivalent definition of NP is a decision

problem D is in NP if there exists a deterministic verifier V running in polynomial time such that

for every yes instance of D, there exists a polynomial sized witness w such that when w is given

to V as input, V verifies that the answer to D is, in fact, yes. The complexity class coNP is the

collection of decision problems whose complements are in NP.

For a few easy examples, we consider the decision problems above. A graph is known to have

an Eulerian path if and only if the number of vertices with odd degree is 2 or fewer. Given a graph

G = (V,E) as an adjacency matrix (there are similar algorithms for other representations), we can

17

sum a row of the adjacency matrix to count how many neighbors any one vertex has. Summing

each row and counting the number of vertices with an odd number of neighbors gives an algorithm

deciding EUL-PATH which runs in O(|V |2) time. Since the graph was described in O(|V |2) space,

EUL-PATH is in P.

Next, we note that there is unfortunately no known similar characterization for Hamiltonian

paths. However, showing HAM-PATH is in NP is still easy. Suppose G = (V,E) is a graph which

does have a Hamiltonian path. Let the witness be a list of vertices which form a Hamiltonian path.

Since every vertex is visited exactly once, this list has length |V | which is polynomial in size. For

the verifier program, we first check that each edge implied by the witness is, in fact, an edge of

the graph. Naively, this takes O(|V | · |E|) time. Then we check that every vertex in the graph

is listed in the given witness, which can easily be done in O(|V |2) time. Thus our verifier runs in

O(|V | · |E| + |V |2) = O(|V |3) time, which is polynomial in the size of G. Thus HAM-PATH is in

NP. Noting that our verifier for HAM-PATH can say nothing about graphs which do not have a

Hamiltonian path, we turn to the next example.

Similar to the requirement for a problem to be in NP, for a problem to be in coNP, we need

a polynomial-time verifier and polynomial-sized witnesses. However, we only need to be able to

answer “no” rather than “yes” as for NP problems. Considering the PRIMES example, we let our

witness be any two factors of n. Then our verifier will multiply the two factors and ensure that the

product is the given number n. If the product is not n, we can say nothing about the primality

of n. Since the decision problem NOT-PRIME is in NP, we have PRIMES is in coNP. (It turns out

PRIMES is actually in P [2], but the proof is much deeper.)

Considering the size of our witness and the runtime of our verifier, we pause to question

what the size of the input is. When the input to a decision problem is a single number, we usually

describe the input size as the number of bits required to represent it in a computer. That is, the

input size is O(log(n)). Since the two factors of n are both smaller numbers, our witness has size

O(log(n) + log(n)) = O(log(n)). Finally, while performing multiplication as repeated addition is

not a polynomial algorithm, the multiplication algorithm typically learned in elementary school is

18

polynomial in time (even without relying on the assumptions of the RAM model). And faster still

are the algorithms encoded in computer processors.

Recalling that we did not account for the memory to store the numbers themselves in the

sorting example, we note that the input size would have been more precisely stated as O(n log(m))

where n is the length of the list and m is the largest number in the list. Observing that there is

some conflict between the RAM model’s ability to perform arithmetic operations on any number

in a single step and at the same time accounting for the storage size of numbers, we prevent our

algorithm analysis from becoming needlessly complicated by establishing the convention that all

numbers in a list (or similar) are stored in constant space. If storage space or encoding style affects

results in a non-polynomial way, we will make an explicit note.

Regarding the final example, GI is known to be in NP but not P or coNP. However, GI is

known to be another complexity class called coAM. The classes AM and coAM were introduced by

Babai and Moran [4, 9] and at essentially the same time by Goldwasser, Micali, and Rackoff [26]

with GI as one of the main motivations.2 The two definitions differed on whether the coin flips

were public or private, but Goldwasser and Sipser then showed the two definitions define the same

class of problems [27]. The class AM consists of the problems solvable by interactive proofs known

as Arthur-Merlin protocols. King Arthur is a mortal who has at his power random coin flips and

deterministic algorithms. Merlin, the all-powerful wizard, can answer however he wants. A problem

is in AM if both of the following are true.

• If the answer is “yes,” then Merlin can act in such a way that Arthur says “yes” with

probability at least 0.6.3

• If the answer is “no,” then no matter what Merlin does, Arthur will say “no” with proba-

bility at least 0.6.

2 These definitions were the first introductions of interactive proof systems and resulted in the five authors jointly
winning the 1993 Gödel Prize.

3 The number 0.6 can be replaced by any fixed probability strictly larger than 0.5. Then the procedure can be
repeated to increase the probability of correctness arbitrarily close to 1. For an example, given a procedure that
answers correctly with probability 0.55, we can run it four times in a row to get a procedure that answers correctly
with probability 1− (1− 0.55)4 = 0.96.

19

Similar to coNP, the complexity class coAM is the class of problems where “no” instances

are in AM. As mentioned above, GI is in coAM. But to give a better idea of what AM is, we give a

non-rigorous example of a problem in AM.

Consider the problem of a color blind person, Arthur, trying to determine if a red marker and

a green marker are actually different colors. His friend Merlin claims to be able to tell the difference.

Arthur devises the following decision procedure. He will hold one marker in each hand with only

the colored caps visible. He asks Merlin which marker is green and puts both hands behind his

back. After either switching them to opposite hands or not (depending on a mental random coin

flip), he will show the markers to Merlin and ask which marker is green. Then Arthur will repeat

the same test. Arthur will say “yes” the markers are different if Merlin picks the pre-established

green marker both times. Arthur will answer “no” the markers are not different otherwise. If the

markers really are different, Merlin can answer correctly both times, so Merlin can act in such a

way that Arthur says “yes” with probability 1. If the markers are the same, Merlin will be randomly

guessing whether or not Arthur switched hands. Merlin will guess correctly with probability 0.25,

so Arthur will say “no” with probability 0.75. Since both 1 and 0.75 are greater than 0.6, this

problem is in AM.

Looking back to our idea that P is roughly the class of problems which can be solved efficiently,

we get

• NP is the class of problems where we can efficiently verify someone else’s claim that an

answer is yes.

• coNP is the class of problems where we can efficiently verify someone else’s claim that an

anwser is no.

• AM is the class of problems where we can efficiently verify someone else’s claim that an

answer is yes, but only with arbitrarily high probability.

• coAM is the class of problems where we can efficiently verify someone else’s claim that an

answer is no, but only with arbitrarily high probability.

20

Considering the relations between these complexity classes, a few things are are clear: P ⊆

NP ⊆ AM and P ⊆ coNP ⊆ coAM. None of the preceding containments are known to be strict,

and determining if P (NP is a Clay Millennium Prize Problem.4

2.2.3 Reductions and C-hard problems

Earlier, we saw EUL-PATH ∈ P and HAM-PATH ∈ NP. However, HAM-PATH is not known

to be in P. In fact, HAM-PATH ∈ P if and only if P = NP. We would like to say HAM-PATH

is at least as hard as EUL-PATH, which leads us develop a way to compare difficulties of decision

problems.

Suppose A,B are two decision problems. Consider a computational model MA which has

an extra instruction allowing it solve any instance of A in a single step. Since polynomial time

algorithms are our idea of efficient, we will say B is polynomial-time Turing reducible (or

Cook reducible) to A, written B ≤PT A, if MA can solve B in polynomial time. Making the

restriction that we can solve an instance of A only once during our algorithm and only as the

final step, we get that B is polynomial-time many-one reducible (or Karp reducible) to

A, written B ≤Pm A. If B ≤Pm A, we say A is B-hard or A is at least as hard as B. The

idea behind many-one reducibility is that B is many-one reducible to A if we can, in polynomial

time, change any instance of B into an instance of A where the instances of A and B have the

same answer. Extending hardness to complexity classes, we say a problem A is C-hard for any

complexity class C if B ≤Pm A for every B ∈ C. That is, A is C-hard if A is at least as hard as every

problem in C. Additionally, if we have A is both C-hard and A ∈ C, then A is C-complete. The

most important class of complete problems are NP-complete problems. Considering our examples

again, both HAM-PATH and TRAVELING-SALESMAN are NP-complete. At the end of the previous

section, we mentioned one of the most important open problem in mathematics of whether or

not P = NP. With our new vocabulary, we note that P = NP if a single NP-complete problem

is shown to be in P, and P 6= NP if it can be shown that a single NP-complete problem is not

4 with a $1 million prize attached

21

contained in P. If there exists problems in NP \ P which are not NP-complete, they are called

NP-intermediate problems. If fact, Ladner’s theorem says NP-intermediate problems do exist if

P 6= NP [43]. Many attempts to resolve the P vs NP question have centered around the hope that

GI is NP-intermediate as GI not known to be in P nor is it known to be NP-complete. As such, a

complexity class of problems, which will be important later, is defined around GI. As is standard,

we abuse notation to define the complexity class GI by GI = {A : A ≤PT GI}. Many problems known

to be GI-complete are restrictions or generalizations of GI. Of particular concern in Chapter 3 are

the GI-complete problems of determining isomorphism between directed graphs and determining

isomorphism between directed multigraphs.

2.2.4 Decidability

So far we have only introduced decision problems which have nice property that there is an

obvious brute force option to solve it. While brute force algorithms typically run in O(cn) time, and

hence are impractical for use, decision problems need not be solvable by any algorithm at all. A

decision problem D is decidable if there is an algorithm A such that when A is given any instance

of D, A is guaranteed to determine the correct answer in a finite amount of time. A decision

problem which is not decidable is called undecidable. The following problems are all undecidable.

• HALT: Given the description of the Turing machine M and some input w, will M halt or

run forever when given w as input?

• A group G is a finitely presentable group if there exist a finite set of generators S and

finite set of relations R such that G = 〈S | R〉.

GpI-FinitelyPresented: Given two finitely presentable groups G,H, is G ∼= H? [55, Corol-

lary 3.5].

• A Markov property P of a finitely presentable group is any property of a group such

that:

(1) P is preserved under group isomorphism.

22

(2) There exists a finitely presentable group with property P .

(3) There exists a finitely presentable group which cannot be embedded in any finitely

presentable group with property P .

HasMarkovProperty: Given a group G and a Markov property P , does G have P? [1, 61].

2.3 Symbolic dynamics

In Chapter 3, the main focus will be discrete dynamical systems (discrete in both space/state

and time), known as shift spaces. Of particular concern are shifts of finite type (SFTs). For a

more in-depth introduction to symbolic dynamics, see any introductory textbook to the field such

as [51, 40]. Fix an alphabet A = {1, 2, . . . , n}. A bi-infinite sequence in A is any sequence

with entries in A indexed by Z (i.e., a sequence which is infinite in two directions). Given a bi-

infinite sequence · · · a−2a−1.a0a1a2 · · · , where the period is placed between index −1 and index 0,

the shift operator σ shifts the sequence to the left by 1. That is, σ(· · · a−2a−1.a0a1a2 · · ·) =

· · · a−1a0.a1a2a3 · · · . Then for any fixed alphabet A, a shift space (or shift) is any collection of

bi-infinite sequences from A, which is closed under σ (and σ−1).

For an example, consider the set of all bi-infinite sequences with entries in alphabet A =

{0, 1}. This is a shift space called the full shift on two letters (or the full 2-shift) and is

denoted Xfull (where A is implied) or {0, 1}Z. For better terminology, any bi-infinite sequence

in AZ (for any alphabet A) is called a point. Any finite sequence of letters from A is a block

(or word). Extending this terminology, a sequence of characters which is infinite in exactly one

directions will be called an infinite word. For any point p ∈ AZ, the subword of p from index i to

j is the word p[i,j] = pi · · · pj . In a similar fashion, we define the sub-infinite words p[i,∞) and p(∞,i]

in the obvious way. Collecting all blocks which are subwords of some p in a fixed shift space X, we

have Bn(X) = {w : there exists p ∈ X, i ∈ Z such that p[i,i+(n−1)] = w}.

If a shift X is contained in the shift Y , then X is called a subshift of Y . In particular,

consider the shift X(01)∗ consisting of points in {0, 1}Z where no two 1s nor no two 0s are adjacent.

23

Then X(01)∗ = {· · · 010.101 · · · , · · · 101.010 · · · } and X(01)∗ is a subshift of {0, 1}Z.

Furthermore, after fixing an alphabet A, consider a list of words F in A. Then the collection

of points from AZ which contain no word in F as a subword form a subshift of AZ denoted XF .

The words in this list F are called the forbidden blocks of XF . In fact, every shift space can

be written as XF for some set of forbidden blocks. Note that for any shift other than a full shift,

there are many possible collections of forbidden blocks. In particular, consider F1 = {00, 11} and

F2 = {000, 001, 011, 110, 111}; both XF1 and XF2 are descriptions of X(01)∗ . While these lists of

forbidden blocks are finite, we could have written a description of X(01)∗ by using the infinite set

of forbidden blocks F3 = {00w, 11w : w is any block in the alphabet {0, 1}}.

So far every example shift has had a description whose list of forbidden blocks is finite; this

need not be the case. For example, consider the shift XF4 where F4 = {10k1 : k is odd}. There is

no way to describe XF4 with a set of forbidden blocks where the set of forbidden blocks is finite in

size (see [51, Example 2.1.5] for a proof). In the special case where the shift X can be represented

by a finite list of forbidden blocks, X is called a shift of finite type (SFT). SFTs will be the

primary focus of Chapter 3.

Even though most shift spaces are infinite in size, there are frequently concise, even finite,

representations. Given a directed graph G = (V,E) with labeled vertices (each distinct), we

associate to it the shift space XG = {(vi)i∈Z : vi ∈ V, (vi, vi+1) ∈ E for all i ∈ Z}, which is the

collection of all bi-infinite walks on G. Note that XG is a shift of finite type with F = {vivj :

(vi, vj) /∈ E}. Any shift of this form is called a vertex shift. Not only is every vertex shift a SFT,

but also, every SFT is conjugate to a vertex shift (but possibly over a different alphabet). See

Figure 2.4 for examples of vertex shifts.

Now consider a directed multigraph G = (V,E) with labeled edges (each distinct). Associated

to G is the shift space Xe
G called the edge shift of G where the points are the bi-infinite walks on

G. Again, note that Xe
G is a SFT where F = {e1e2 : e1 does not terminate at the initial vertex of

e2}. As with vertex shifts, we also have that every SFT is conjugate to an edge shift. See Figure 2.5

for examples of edge shifts.

24

F G H

1

0

1

2

0

1

0

Figure 2.4: Three examples of vertex shifts. XG and XH are conjugate via the 1-block code mapping
1, 2 7→ 1, 0 7→ 0 as 1 and 2 can be amalgamated in G to form H.

E′ F ′ G′ H ′

•

•
1

0

2

•

0

1

•
v1

v2

•
1 3

2
4

0

5

• v •
1

2

(34)

5

0

Figure 2.5: Four examples of edge shifts. XG′ and XH′ are conjugate as G′ can be transformed
into H ′ by amalgamating vertices v1 and v2.

25

Consider a vertex in a directed graph (or multigraph) with either no in-neighbor or no out-

neighbors. Such a vertex is called stranded. A directed graph (or multigraph) with no stranded

vertices is called essential. Note that no point in XG (or Xe
G) can pass through a stranded

vertex and that stranded vertices can be efficiently trimmed from G (in an iterative fashion) to

create an essential graph. Thus we can assume without loss of generality that any directed graph (or

multigraph) representing a vertex (or edge) shift is essential. Additionally, we restrict our attention

to directed graphs (or multigraphs) which are connected. For the problems of finding or verifying a

conjugacy between vertex (or edge) shifts, the function Φ∞ : XG → XH is a conjugacy if and only

if for each strongly connected component Gi of G, Φ∞ restricted to a Gi as Φ∞|Gi : XGi → XHi is

a conjugacy. Furthermore, as all graphs (and similarly for multigraphs) in this section (and again

in Chapter 3) are directed, we will often write “graph” instead of “directed graph.”

As is discussed in §3.7, there are cases where representing a shift space by a vertex shift

may take exponentially more space that representing the same shift as an edge shift. In particular,

consider the full d-shift. As an edge shift, the adjacency matrix of the smallest graph representing

this shift is a 1 × 1 matrix with d as the single entry; however, as a vertex shift, the adjacency

matrix of the smallest graph representing this shift is a d × d matrix where every entry is a 1.

Note also that shift XH in Figure 2.4 and shift XF ′ in Figure 2.5 are the minimal representations

of the full 2-shift. In §3.4, we look at the problem of finding a “smaller” representation of SFT

(see Theorem C) which is conjugate to a given SFT. Noting that vertex shifts and edge shifts need

not specify a labeling as the labels are distinct, it is tempting to focus on finding small edge shift

representations. Complicating this matter further, however, is that there are cases where every

edge shift representation of a shift space requires a larger alphabet than the smallest vertex shift

representation.5 For an example, consider the shifts XF in Figure 2.4 and XE′ in Figure 2.5. The

shift spaces XF and XE′ are conjugate, but there is no edge shift on two letters6 which is conjugate

to this shift. In general, “smaller” representations is ill-defined unless restricting to vertex shifts,

5 For every edge shift there is a conjugate vertex shift with the same alphabet.
6 To verify this fact, it is easy to check each essential edge shift on two letters.

26

and talking about the complexity of algorithms for edge shifts (at all) is quite nuanced. As such,

we mainly focus on vertex shifts. (Note that §3.5 and §3.6 are exceptions.)

Definition 2.3.1. A shift X is irreducible if for every pair of words w1, w2 in X, there is a word

w3 such that w1w3w2 is a word in X, and X is reducible if it is not irreducible. In graph-theoretic

terms, a vertex shift XG (or edge shift Xe
G) is irreducible if and only if G is strongly connected.

For examples, note that shifts XG, XH from Figure 2.4 and XF ′ , XG′ , XH′ from Figure 2.5

are irreducible while shifts XF and XE′ are reducible.

Given a shift X with alphabet A1, we can transform X into a shift space over another

alphabet A2 in the following way. Fix integers m, a with −m ≤ a. Then letting Bn(X) denote

the set of blocks of size n from the shift X and given a function Φ : Bm+a+1(X) → A2, the

corresponding sliding block code with memory m and anticipation a is the function Φ∞ defined

by Φ∞((xi)i∈Z) = (Φ(x[i−m,i+a]))i∈Z. That is, Φ∞ looks at a block of size m + a + 1 through a

window to determine a character from A2. Then the window is slid infinitely in both directions.

Letting k = m + a + 1, we will call any sliding block code with window size k a k-block code.

Given a sliding block code as Φ : Ak1 → A2, we extend Φ to all finite and infinite words w of length

at least k by Φ((wi)i∈I) = (Φ(w[i−m,i+a]))i−m,i+a∈I , where I (Z. That is, we extend Φ to words

by sliding Φ over the entire word. Up to this point, we’ve been using the word conjugacy without

formally defining it. A sliding block code Φ∞ : X → Y is a conjugacy if it is both injective and

surjective. If there exists a conjugacy Φ∞ : X → Y , X and Y are called conjugate shift spaces

and we write X ∼= Y .

Pausing to motivate sliding block codes, we note that any sliding block code commutes with

the shift map; that is, for any 1-block code Φ∞ : X → Y , we have Φ∞ ◦ σX = σY ◦ Φ∞ [51,

Proposition 1.5.7]. Even more, any shift space is a metric space with metric

ρ(x, y) =

2−k if x 6= y and k is maximal so that x[−k,k] = y[−k,k],

0 if x = y.

27

While the details of this metric will not be important for our purposes, we will use that the induced

topological space is compact [51, Example 6.1.17(5)]. Furthermore, we have the following theorem.

Theorem 2.3.2 (Curtis–Hedlund–Lyndon Theorem [30]). A function ϕ : X → Y is continuous

with respect to the topology induced by ρ if and only if ϕ is a sliding block code.

Let X be any shift space with alphabet A1. We define the kth higher block shift X [k] (which

is conjugate to X) with alphabet A2 = Bk(X) by the image of X under βk : X → (Bk(X))Z

where for any point p ∈ X, βk(p)i = p[i,i+k−1]. If X = XG happens to be a vertex shift, we can

construct the kth higher block shift in terms of the graph. For any directed graph G, construct the

graph G[k] by VG[k] = {v1 · · · vk : v1 · · · vk is a path in G} and EG[k] = {(v1v2 · · · vk, v2 · · · vkvk+1) :

v1 · · · vk+1 is a path in G}. Then XG[k] = X
[k]
G . When dealing with k-block codes, it is often useful

to pass to a higher block shift by noting that there is a k-block conjugacy Φ∞ : X → Y if and

only if there is a 1-block conjugacy Φ
[k]
∞ : X [k] → Y [51, Proposition 1.5.12].

Furthermore, any sliding block code Φ∞ : XG → XH between vertex shifts induces the

function Φc :
⋃∞
n=1Cn(G) →

⋃∞
n=1Cn(H) defined as follows. Given a cycle c in G, there is a

unique cycle d in H with |c| = |d| such that Φ∞(c∞) = d∞; we set Φc(c) = d. In the special case of

a 1-block code, the block map Φ : A1 → A2 is simply a map between the alphabets. In this case,

when XG is a vertex shift, we have Φc(v1 · · · vn) = Φ(v1) · · ·Φ(vn).

Definition 2.3.3. Let XG be a vertex shift. We say states u, v ∈ VG can be amalgamated if one

the following conditions is met.7

(1) N+(u) = N+(v) and N−(u) ∩N−(v) = ∅

(2) N−(u) = N−(v) and N+(u) ∩N+(v) = ∅

If u and v are amalgamated, they are replaced by the vertex uv which has N+(uv) = N+(u)∪N+(v)

and N−(uv) = N−(u) ∪N−(v). Dual to the notion of amalgamation is the notion of splitting:

7 We remind the reader that N−(u) is the set of in-neighbors of u and N+(v) is the set of out-neighbors of v as
defined in §2.1.

28

Definition 2.3.4. Let XG be a vertex shift. A vertex v ∈ VG can be split into two vertices v1 and

v2 provided the edges of v1, v2 satisfy one of the following conditions.

(1) {N+(v1), N+(v2)} is a partition of N+(v) and N−(v1) = N−(v2) = N−(v).

(2) {N−(v1), N−(v2)} is a partition of N−(v) and N+(v1) = N+(v2) = N+(v).

The corresponding new graph is called a state splitting of v. Note that state splittings and

amalgamations are inverse operations. For an example, consider shifts XG and XH in Figure 2.4.

As G can be transformed into H by amalgamating vertices 1 and 2, we also have H can be

transformed into G by splitting vertex 1.

The definitions for edge shifts are similar. Since edges shifts are based on multigraphs, N−(v)

and N+(v) are multisets. The definition of a state splitting is identical noting that the partition is

a multiset partition. For amalgamations, two vertices u, v can be amalgamated if N−(u) = N−(v)

or N+(u) = N+(v). In the case where N−(u) = N−(v), u, v are replaced by a single vertex uv

with N−(uv) = N−(u) = N−(v) and N+(uv) = N+(u)] N+(v), where N+(u)] N+(v) is the

multiset disjoint union. For an example, consider shifts XG′ and XH′ in Figure 2.5. As G′ can be

transformed into H ′ by amalgamating vertices v1 and v2, we also have H ′ can be transformed into

G′ by splitting vertex v.

Theorem 2.3.5 ([74, 51]). Let XG, XH be vertex shifts (or edge shifts). Then XG and XH are

conjugate if and only if there is a sequence of state splittings followed by a sequence of amalgamations

which transform G into H.

In the case of a 1-block code Φ : VG → VH , we may view the block map as a partition

of the vertices of G, where each element of the partition is converted to a vertex of H. In light

of Theorem 2.3.5, it may be tempting to think that every 1-block conjugacy can be written as a

sequence of amalgamations only, as intuitively splitting a vertex while requiring the vertices be

re-amalgamated has no benefit. Yet this statement is not true; there are simple examples of two

29

graphs admitting a 1-block conjugacy, where no pair of vertices can be amalgamated in either graph

(Figure 2.6).

(a)

a

b

c

d

e a 7→ a
b, c, d, e 7→ b

a

b

(b)

a

b

c

d

e a

b1

b2c

d

e a

c

b1d

e

b2

a

b2c

b1de a

b2c

b1de

a

bcde

Figure 2.6: (a) A minimal example of two vertex shifts which are conjugate by a 1-block code but
not by a sequence of amalgamations. (b) The conjugacy, demonstrated via a splitting followed by
four amalgamations.

2.4 Tensors

2.4.1 Introduction

In chapter 4, we look at the problem of determining isomorphism between groups. To do

this, we translate the problem of isomorphism of p-groups of exponent p and nilpotence class 2

to the problem of isomorphism of a subclass of tensors. We now introduce tensors and the tensor

isomorphism problem.

A d-tensor is a multilinear map T : V1 × V2 × · · · × Vd−1 � Vd where the Vi are vector

spaces over the field F. Note that we are using the symbol � to mean a map is multilinear. If

T is a d-tensor, we say T has valence d. For examples, 1-tensors are vectors and 2-tensors are

30

linear maps. Noting that tensors are defined as multilinear maps independent of basis, we say two

tensors T, T ′ are isomorphic (this is also called tensor equivalence) if, after picking bases for

T, T ′, there is a change of basis for T which transforms it to be T ′. Going back to our examples,

two 1-tensors v, v′ are isomorphic if and only if they are both non-zero or both zero. Similarly,

recall that linear maps are simply matrices. Then two 2-tensors M,M ′ are isomorphic if and only

if they have the same rank.

Valence 1 and 2 tensors are well-understood as the content of a standard undergraduate

course in linear algebra. Increasing in valence, we note that tensors of valence higher than 3 exist

and are highly important; however, we only need valence 3 tensors for our context, so our remaining

examples and definitions will be tailored to the valence 3 case. Furthermore, concerning ourselves

with the computational problem of determining tensor equivalence, isomorphism of valence d tensors

reduces to the case of isomorphism of valence 3 tensors for all d ≥ 1 [29].

2.4.2 Valence 3 tensors

Restricting to the case of valence 3, a valence 3 tensor is a bilinear map T : U × V � W ,

where we write either (u, v) 7→ T (u, v) or (u, v) 7→ uTvT . Motivating the second choice of notation,

pick a basis for T and consider the special case where W is a field and U, V are vectors spaces

over W . Then T : Fn × Fm → F is given by a matrix, and for any vectors u ∈ U, v ∈ V , we have

T (u, v) = uTvT (as multiplication of matrices, where we note our convention that vectors are row

vectors). Relating back to other commonly studied objects, the valence 3 tensors with U = V = Fn

and W = F are the bilinear forms over F.

Pick a basis for the 3-tensor T where T : Fn × Fm � F`. We will also call T a (n×m× `)-

tensor as T = (Tijk)(i,j,k)∈[n]×[m]×[`] where [n] = {1, 2, . . . , n}, i.e., T can be written as a n×m× `

cube of field elements. Slicing this cube in any direction gives an ordered list of matrices. Fixing

an orientation to 3-tensors, we think of this vector having height n, width m, and depth `. Of

particular concern will be the slices of T such that there are ` slices and each slice is a n × m

matrix. These slices are notated {T∗∗k}k=1...,`. Then to evaluate T (u, v) for any u ∈ Fn, v ∈ Fm, we

31

0 2 0

0 0 2

1 0 0

1 0 0
0 1 0

0 0 1

0

2

0

2

2

0

2

0

1

1

1 0 0
0 0 2
0 2 0

0 1 0

1 0 2
0 2 2

0 0 1

0 1 0
1 0 2

Figure 2.7: An example of the multiplication tensor over F53 = F5[x]/(x3−2x−2) being embedding
into F5 and then sliced front to back.

have T (u, v) = 〈uT∗∗1vT , . . . , uT∗∗`vT 〉 ∈ F`. For example, consider the tensor in Figure 2.7. Then

letting u = 〈1,−1, 2〉, v = 〈1, 0,−1〉,

T (u, v) = uTvT (2.1)

=
〈
uT∗∗1v

T , uT∗∗2v
T , uT∗∗3v

T
〉

(2.2)

=

〈
u

1 0 0

0 0 2

0 2 0

 vT , u

0 1 0

1 0 2

0 2 2

 vT , u

0 0 1

0 1 0

1 0 2

 vT
〉

(2.3)

= 〈−2, 2, 2〉. (2.4)

Recalling that we can change the basis of the vector space Fn by multiplying every vector by

an element A ∈ GLn(F), we change the basis of a tensor T in the input coordinates by

uT∗∗kv
T 7→ (uA)T∗∗k(vB)T = u(AT∗∗kB

T)vT for all k.

Also, from studying matrices, we know the transformation M 7→ AMBT for arbitrary (A,B) ∈

GLn(F)×GLm(F) corresponds to doing arbitrary row and column operations to M . Thus we have

that changing the basis in the input coordinates corresponds to doing arbitrary row and column

operations with the added restriction that the same operations must be done to every slice. That

is, we are allowed to add row 3 to row 1 under the condition that we add row 3 to row 1 in every

32

single slice at the same time. We will denote a change of basis of this form by T 7→ ATBT (or

T∗∗k 7→ AT∗∗kB
T). Changing basis in the output coordinates, however, is more complicated as our

tensor seems to be sliced in the wrong direction to say anything. To correct this, we can “glue”

the slices of T back together, slice it in either of the other directions, apply a change of basis in

the third direction, “glue” it back together, and slice it front to back again. While this certainly

works, we instead note that a change of basis in the third direction is equivalent to performing

slice operations, which, similar to row operations, are the operations:

• Multiply any one slice T∗∗k by a scalar α ∈ F \ {0}.

• Swap any two slices T∗∗k and T∗∗k′ .

• For any scalar α ∈ F \ {0}, add αT∗∗k to the slice T∗∗k′ .

In the case where only the slice operation of swapping slices is used, we call the basis change a

shuffle of the slices. We will denote any change of basis in the third direction by T∗∗k 7→
∑
k′
αk′T∗∗k′ .

2.4.3 Symmetric and alternating tensors

Sometimes, similar to bilinear forms, tensors have nice properties which we would like to keep

invariant under change of basis. For example, in bilinear forms, b is symmetric if b(u, v) = b(v, u)

for all u ∈ U, v ∈ V and b is alternating if b(v, v) = 0 for all v ∈ V . To generalize either of these

to tensors, we need that both input vector spaces are the same; that is, we must restrict to tensors

T : V ×V �W . Furthermore, if we chose a basis for V in one coordinate, we must choose the same

basis for V in the other coordinate. Then we define symmetric 3-tensors and alternating 3-tensors

in the same fashion as bilinear forms. Namely, a 3-tensor is symmetric if T (u, v) = T (v, u) for

all u, v ∈ V and a 3-tensor is alternating if T (v, v) = 0 for all v ∈ V . Picking a basis, we have

in our evaluation notation that T is symmetric if and only if for each k, uT∗∗kv
T = vT∗∗ku

T for all

u, v ∈ V ; that is, T is symmetric if and only if each slice T∗∗k is a symmetric matrix. Note that

the tensor in Figure 2.7 is symmetric. Similarly, T is alternating if and only if each slice T∗∗k is

skew-symmetric (T∗∗k = −T T∗∗k) with 0s on the diagonal.

33

To ensure that a tensor being symmetric or alternating is a property independent of any

basis, we must restrict the legal basis changes. Suppose T : V × V � W is either symmetric or

alternating. Then changing the basis of V by multiplying every vector by A ∈ GLn(F) gives

uTvT 7→ (uA)T (vA)T = u(ATAT)vT .

In terms of row and column operations, these basis changes correspond to performing any row

operation and then following it up with the same column operation. For example, first add row

3 to row 1 in every slice. Then we must immediately add column 3 to column 1 in every slice.

Thankfully, W is allowed to be an arbitrary vector space over F, so the legal slice operations for

symmetric or alternating tensors are unaffected. When making the transformation T 7→ ATAT

via a row operation followed by the mandatory column operation, we will call this simultaneous

operation a row/column operation. In Chapter 4, we will primarily (but not universally) be

concerned with alternating tensors and these restricted basis changes. (The problem of determining

if two alternating tensors are equivalent under these restricted basis changes is known as pseudo-

isometry (of bilinear maps) or alternating matrix space isometry.)

2.4.4 Writing a tensor over Fq as a tensor over Fp

So far, we have made no restrictions on F. In Chapter 4, all of our tensors will be defined

over finite fields. Suppose T : Fcpn × Fcpn � Fdpn is a symmetric or alternating 3-tensor. As vector

spaces, Fpn is also a n dimensional vector space over Fp. We will introduce a canonical way to

transform T from a chosen Fpn-basis to be a (cn × cn × dn)-tensor over Fp. Thus given a second

tensor T ′ : Fc′pm × Fc
′
pm � Fd′pm , we can write both tensors over Fp and ask if T, T ′ are isomorphic

over Fp.

To do this, we “blow up” each entry from Fpn to be a n× n× n block of numbers from Fp.

Once we can transform any (1× 1× 1)-tensor over Fpn to be a (n× n× n)-tensor over Fp, we will

“glue” the “blown up” entries of a larger tensor together in the obvious way. Unfortunately, this

process depends on the representation of Fpn . Fix any representation of Fpn as Fp[x]/(a(x)), and

34

pick the basis of Fpn as a n-dimensional vector space over Fp to be (1, x, x2, . . . , xn−1). Consider any

α = α0 +α1x+ · · ·αn−1x
n−1 ∈ Fpn ; we define the projection functions πi : Fpn → Fp by πi(α) = αi.

Letting T be the (1 × 1 × 1)-tensor with α as its single entry, we construct the corresponding

(n×n×n)-tensor T ′ by setting T ′ijk = πk(x
i−1 ·α ·xj−1) for i, j, k ∈ {1, . . . , n}. Then for β, γ ∈ Fpn ,

πi(βTγ
T) = βT ′∗∗iγ

T .

For an example, see Figure 2.7, where the (1 × 1 × 1)-tensor with entry 1 ∈ F5[x]/(x3 − 2x − 2)

is embedded as (3 × 3 × 3)-tensor over F5; continuing our example with those tensors, we denote

them by S and S′ respectively. Note that S encodes multiplication, i.e., S(β, γ) = β · γ, so we

have that S′ also encodes the multiplication structure of Fpn . For an example, consider that

(1− x+ 2x2) · (1− x2) = (−2 + 2x+ 2x2) in Fp[x]/(x3 − 2x− 2). By the calculation in (2.1)–(2.4),

we see S′(〈1,−1, 2〉, 〈1, 0,−1〉) = 〈−2, 2, 2〉, so this particular multiplication (and, in fact, every Fpn

multiplication) is encoded in S′.

2.5 Finite group theory

In Chapter 4, the main focus will be the group isomorphism problem, which given two groups

G,H asks: Is G ∼= H? We now introduce enough definitions to give an intuitive explanation of our

problem, and then discuss some technicalities regarding representing groups in computers.

2.5.1 Background

Of particular concern will be p-groups of exponent p which are nilpotent of class 2. A group

G is called a p-group if |G| = pα for some prime p. The exponent of G is the smallest e such

that Ge = {ge : g ∈ G} = {1}. A central series for a group G is a series

{1} = A0 E A1 E · · · E An = G

of subgroups Ai of G such that [G,Ai] ≤ Ai−1. A group G is nilpotent if G has a central series

and is nilpotent of class c (or simply class c) if its shortest central series has length c. As an

35

alternate definition specific to groups of nilpotence class 2, G is nilpotent of class 2 if G is nonabelian

and G′ ≤ Z(G). Pausing to motivate the study of isomorphism restricted to class 2 p-groups, we

note there is theoretical evidence, beyond working with practical algorithms, which suggests this

case of isomorphism is hard. First, classifying p-groups is a wild problem (in the technical sense of

“wild”) [68]. Even more, there is a polynomial time reduction from the case of p-groups of exponent

p and nilpotence class c < p to the case of p-groups of exponent p and nilpotence class 2 [29]. Using

three known results regarding the structure of nilpotent groups, we reduce isomorphism in class 2

nilpotent groups to an even nicer class of groups.

Proposition 2.5.1.1 ([36, Theorem 1.26]). A finite group G is nilpotent if and only if G splits as

the direct product of its Sylow p-subgroups.

Proposition 2.5.1.2 ([77]). Determining whether a group G is a nontrivial direct product, and, if

it is, finding G1, G2 such that G ∼= G1 ×G2 can be done in polynomial time.

Proposition 2.5.1.3 ([47, Exercise 1.2(1)]). Suppose G is a p-group of exponent p such that

G′ � Z(G). Then G ∼= G̃×A where A is abelian and Z(G̃) = G̃′ ∼= G′.

That is, Propositions 2.5.1.1 and 2.5.1.2 say that in order to determine isomorphism of nilpo-

tent groups in polynomial time, it is sufficient to determine isomorphism of p-groups in polynomial

time. As discussed above, it is commonly believed that determining isomorphism among p-groups

of class 2 and exponent p is the most difficult case of group isomorphism. Chapter 4 is dedicated

to such groups, and Propositions 2.5.1.3 and 2.5.1.2 say it is sufficient to add the assumption that

G′ = Z(G) (these groups are also called the nonabelian special p-groups). Finally, considering that

all 2-groups of exponent 2 are abelian, we assume p is an odd prime for the remainder of this thesis

unless explicitly stated otherwise.

2.5.2 A brief introduction to genus 2 groups

Under the restriction to p-groups of class 2 and exponent p, we now give an intuitive definition

of the genus of a group. (For a rigorous definition, see §4.2.) For a directly indecomposible p-group

36

G of exponent p with G′ = Z(G), G′ is elementary abelian; that is, G′ = Z(G) ∼= Z/pZ× · · ·Z/pZ.

Since Fp ∼= Z/pZ as groups, G′ is a d-dimensional vector space over Fp; however, it might be the

case that G can be viewed as being defined over a field extension Fq of Fp. Viewing G over the

largest possible Fq, G′ is a g-dimensional vector space over Fq. Then g is the genus of G. For a

few examples, consider the following groups which (respectively) are genus 1 and genus 2.

Example 2.5.2.1.

Hm(Fq) =

1 e z

0 Im fT

0 0 1

 : e, f ∈ (Fq)m, z ∈ Fq

Example 2.5.2.2.

H[
m(Fq) =

I2

e1 · · · em 0

0 e1 · · · em

z1

z2

Im+1

f0

...

fm

1

: ei, fi, zi ∈ Fq

It is not difficult to verify

Z(Hm(Fq)) =

1 0 z

0 Im 0

0 0 1

 : z ∈ Fq

and

Z(H[
m(Fq)) =

I2 0
z1

z2

0 Im+1 0

0 0 1

: zi ∈ Fq

,

so Hm(Fq) has genus 1 and H[
m(Fq) has genus at most 2. To show H[

m(Fq) has genus 2, which

it does, we need to show H[
m(Fq) cannot be defined over a larger field. Exploring this idea more,

consider the following group.

37

Example 2.5.2.3.

H =

I4

a1 a2 0 0

a2 2a2 0 0

0 0 a1 a2

0 0 a2 2a2

z1

z2

z3

z4

I4

b1

b2

b3

b4

1

: ai, bi, zi ∈ F3

.

At first glance, H appears to be genus 4 as Z(H) = H ′ is 4-dimensional over F3. However, the map

ϕ : H → H[
1(F3[x]/(x2 + x+ 2)) defined by

I4

a1 a2 0 0

a2 2a2 0 0

0 0 a1 a2

0 0 a2 2a2

z1

z2

z3

z4

I4

b1

b2

b3

b4

1

7→

I2

a1x+ a2 0

0 a1x+ a2

z1x+ z2

z3x+ z4

I2

b1x+ b2

b3x+ b4

1

is an isomorphism, so H ∼= H[
1(F9) and H is actually a genus 2 group.

Generalizing our notion of genus slightly, consider any p-group of exponent p with G′ ≤ Z(G).

Then G splits as a direct product A×G1×· · ·×Gm where m ≥ 1, A is abelian, and G′i = Z(Gi). Let

gi be the genus of Gi, the genus of G is defined to be max{g1, . . . , gm}. Looking ahead, Chapter 4

focuses on groups which are quotients of genus 2 groups.

38

2.5.3 Group representation styles

As runtime analysis depends on the input size, we next discuss possible options for repre-

senting groups in computers. In mathematics, it is very common to represent a group as a list

of generators and relations. However, these descriptions are ill-suited to computers as the fol-

lowing problems (and many more) are all undecidable (see [55, Corollary 3.4]). Given a group

G〈g1, . . . , gn | R1 = 1, . . . , Rm = 1〉, determine:

• Is G a finite group?

• Is G the trivial group?

• Does a word w written in terms of g1, . . . , gn represent the identity element of G?

On the opposite extreme, another common way to represent a finite group is as its Cayley table.

While this does not have the problem of simple problems being undecidable, the group G’s Cayley

table takes O(|G|2) space to store, which is cumbersome when |G| is large. In particular, attempting

to store the Cayley tables of the groups of study in Chapter 4 in RAM will fail, in all but the smallest

examples, due to a lack of memory addresses. For example, in theory, a 64-bit processor can address

264 bytes of memory (18.4 exabytes); there are only 7 flat genus 2 groups of size
√

264 or smaller

having quotients where the quotient group has genus greater than 2. That said, representing groups

as Cayley tables is a useful theoretical problem as the size of the input is polynomial in |G|, so

we define the decision problem GpI-CayleyTable as: Given groups G,H as their Cayley tables, is

G ∼= H? In practice, isomorphism algorithms which are given a full Cayley table perform limited

Cayley table lookup operations, and furthermore, having a full Cayley table seems to provide limited

runtime benefit compared to having only a nice set of generating elements, as we now explain.

To balance these two extremes, we will insist on representing groups by a small set of gen-

erators such that common procedures can be completed efficiently. For the size of the generating

set, let |G| = n = pα1
1 · · · pαmm and define µ(n) = max{α1, . . . , αm}. Then G can generated by

µ(n) + 1 elements [15, Corollary 16.7]. In the worst case, n = pα, so µ(n) = α. Thus G always has

39

a generating set of size O(log(|G|)). Regarding the required efficient algorithms, we will work with

any presentation of finite groups such that the group can be stored in O(poly(log(|G|))) space and

there are O(poly(log(|G|))) algorithms to

• Find |G|.

• Given g ∈ G and {g1, . . . , gm} ⊆ G, either write g as a word over {g1, . . . , gm} or prove

g /∈ 〈g1, . . . , gm〉.

• Find generators for Z(G) and G′.

• Decide if G is nilpotent of class 2.

• If G is nilpotent of class 2, find a system of bilinear forms for Bi(G) (see Definition 4.2.1.1).

In particular, all these requirements are satisfied by permutation groups [67], permutation group

quotients [37, 67, 20], and matrices over finite fields [52]. Furthermore, there are also presentations

satisfying these requirements specific to certain classes of groups such as black box polycyclic

representations of solvable groups [32].8 Chapter 4 is focused on the group isomorphism problem

where the groups are given as generating sets. We define GpI to be the decision problem: Given

finite groups G,H as generating sets, is G ∼= H? For any given result, it is important to specify

how the generating set is given. If the details of the generating set are either not important or clear

from context, we will just write GpI.

As an addendum to our discussion of the complexity of GI and GpI in §1.2.2, consider Fig-

ure 2.8 where an arrow A → B means A reduces to B, i.e., A ≤Pm B. In Chapter 4, we consider

nilpotent groups of class 2. For class 2 groups, if the generating set is given by a set of matrices,

GpI is known to be in NP ∩ coAM. Removing the restriction of class 2 groups, the general case

of generators given by permutations is known to be in NP [53]. When the generators are given

by matrices instead, GpI is only known to be in NP if you assume an order oracle. Even harder

are black box representations; deciding isomorphism is only known to be in ΣP
2 [11], and black

8 Note that nilpotent groups are solvable.

40

GpI-CayleyTable

GI

GpI-Matrix,
class < p

GpI-Matrix,
class 2

GpI-Matrix

GpI-Perm

GpI-PermQuotient

GpI-BlackBox∗

[29]

[57]

[29]

ΣP
2

NP ∩ coAM

Figure 2.8: The current complexity landscape for GpI. The reductions represented by unlabeled
solid arrows are obvious special cases. The reduction represented by the dashed arrow seems to be
well-known by the experts but might not be present in the literature. (*) Black box representations
are officially only in the promise hierarchy; to get around this fact, one can consider groups of black
box type instead [21]. Isomorphism of groups of black box type is in NP rather than just ΣP

2 .

box representations are in the promise hierarchy, so reducing to black box representations from

problems not in the promise hierarchy is unusual. Instead, Dietrich and Wilson propose the use of

groups of “black box type” [21]. Thankfully, the models discussed above all have representations

as groups of black box type, and GpI for groups of black box type is in NP.

Chapter 3

Conjugacy and recognition of shifts of finite type

This chapter is joint work with Rafael Frongillo which also resulted in [66].

3.1 Overview

One-dimensional subshifts of finite type (SFTs) are of fundamental importance in the study of

symbolic dynamical systems. Despite their central role in symbolic dynamics, however, several basic

questions about SFTs remain open, particularly with regard to computation. Most prominent is

the conjugacy problem: whether there is an algorithm to decide if two given SFTs are conjugate. In

this work, we study restricted versions of the conjugacy problem, with an eye toward applications

(algorithms to simplify representations of SFTs) as well as developing insights toward the full

conjugacy problem. In particular, we address the computational complexity of deciding or verifying

conjugacy when given a bound on the block size of the corresponding sliding block code. We focus

on the case of vertex shifts; see §3.5 for an extension to edge shifts.

First consider the question of verification: given two vertex shifts and a proposed sliding block

code, what is the computational complexity of verifying that the code induces a conjugacy? We

give a polynomial-time algorithm, for both the irreducible and reducible cases (§3.2, Theorem A).

An algorithm deciding the irreducible case was apparently known to the experts [19], but to our

knowledge had not appeared in the literature previously. Second, the question of deciding k-block

conjugacy: given two vertex shifts, what is the complexity of deciding if there exists a sliding

block code, with block length at most k, that induces a conjugacy? By the first result on efficient

42

verification, this problem is in NP; we show it to be GI-hard for all k (§3.3, Theorem B). Third,

the question of reduction: given a vertex shift and integer `, what is the complexity of deciding

whether there exists a k-block conjugacy which reduces the number of vertices by `? Extending a

construction from previous work [22], we show that this problem, for k = 1, is NP-complete (§3.4,

Theorem C). Fourth, the question of recognition: given a sofic shift, what is the complexity of

deciding if the sofic shift is a SFT? The same key idea for the verification algorithm can also be

used to give a polynomial-time algorithm for this problem (§3.6, Theorem D).

It is interesting to contrast our results with those of previous work [22], on the special

case of k = 1 with the restriction that the block code be a sequence of amalgamations. (Recall

that any conjugacy can be expressed as a sequences of splittings followed by amalgamations; see

Theorem 2.3.5.) This previous work shows that the analogous version of our third problem, of

reducing the number of vertices using only amalgamations, is NP-complete, but it does not address

the verification problem; intuitively it seems plausible that verification would also be NP-hard.

Returning to our setting, note that general 1-block codes need not be sequences of amalgamations

(Figure 2.6). Thus, while it is unsurprising that the reduction problem remains NP-hard in our

setting, it is perhaps surprising given that verification can be done in polynomial time, as a priori

the number of splittings required could be super-polynomial.

We conclude this section with a common way a sliding block code can fail to be injective.

Given a k-block code Φ∞ : XG → XH , if there exist distinct words w2, w
′
2 such that Φ(w1w2w3) =

Φ(w1w
′
2w3) with |w1| = |w3| = k, we say Φ∞ collapses a diamond. As we now state, if a sliding

block code is injective, it cannot collapse a diamond. (As we discuss in §3.2.2, if Φc is injective,

collapsing a diamond is actually the only way Φ∞ can fail to be injective.) We prove the result for

completeness; see, e.g., [51, Theorem 8.1.16] for a similar result in the irreducible case.

Lemma 3.1.1. Let Φ∞ : XG → XH be a k-block code. If Φ collapses a diamond, then Φ∞ is not

injective.

Proof. Suppose Φ collapses a diamond. That is, Φ(w1w2w3) = Φ(w1w
′
2w3) for some words w1, w3

43

of length k and distinct words w2, w
′
2 in G. Consider any infinite word w0 which can precede w1

and any infinite word w4 which can follow w3. Then Φ∞(w0w1w2w3w4) = Φ∞(w0w1w
′
2w3w4), so

Φ∞ is not injective.

3.2 Verification: testing a k-block map for conjugacy

Given a pair of directed graphs G,H, and a proposed k-block map Φ, we wish to verify

whether or not Φ induces a conjugacy between the vertex shifts XG, XH . We will focus in this

section on the case k = 1, as the case k > 1 follows immediately by recoding to the kth higher

block shift. When G and H are irreducible (strongly connected), this problem boils down to

checking that the two graphs have the same number of cycles of each length up to some bound

depending on G, and furthermore that Φ induces an injection on these cycles. While cycle counting

can be done efficiently using powers of the adjacency matrices, the challenge remains of checking

injectivity efficiently.

The reducible case, when G and H are not strongly connected, is much more complex. We

give counterexamples to several statements which would have led to a straightforward algorithm

wherein one subdivides the graphs into their irreducible (strongly connected) components and uses

the algorithm for the irreducible case on each, together with some other global checks. Instead, we

give a more direct reduction to the irreducible case: we efficiently augment the graphs and block

map with new vertices and edges, until the resulting graphs are irreducible, in such a way as to

preserve conjugacy (or lack thereof).

3.2.1 Irreducible case

As described above, we will focus first on 1-block codes. When G,H are irreducible, the

following straightforward topological result allows us to restrict attention to the map induced on

cycles between the graphs.

Remark 3.2.1.1. The results in this section actually only need the periodic points of the shift spaces

to be dense; that is, every result in this section applies to all nonwandering shifts of finite type.

44

However, recalling our assumption in §2.3 that every graph is connected, the nonwandering shifts

of finite type which can be represented by a connected graph are exactly the irreducible shifts of

finite type.

Proposition 3.2.1.2. Suppose X,Y are compact metric spaces, ψ : X → Y is continuous, and

D ⊆ Y is a dense subset of Y . If ψ surjects onto D, then ψ surjects onto all of Y .

Proof. Suppose X,Y are compact metric spaces, ψ : X → Y is continuous, D ⊆ Y is a dense subset

of Y , and D ⊆ ψ(X) ⊆ Y . Let p ∈ Y . Since D is dense, there is a sequence {pn} in D which

converges to p. Since ψ surjects onto D, every pn has a preimage in X. Pick γ : D → X such

that ψ ◦ γ = idD. Then {γ(pn)} is a sequence in X. Since X is compact, there is a subsequence

{γ(pnk)} which converges to some q ∈ X. As limits commute with continuous functions, we have

ψ(q) = ψ(lim
nk→∞

γ(pnk)) = lim
nk→∞

ψ(γ(pnk)) = lim
nk→∞

pnk = p.

Thus ψ(q) = p, so ψ is surjective on all of Y .

We will apply Proposition 3.2.1.2 with D being the set of periodic points of XH , which are in

bijection with cycles of H. The following result, that Φ induces a 1-block conjugacy if and only if

it induces a bijection on cycles, appears to be known (see [51, Exercise 9.1.8] for a related result);

we give the proof for completeness.

Theorem 3.2.1.3. Irreducible vertex shifts XG, XH are conjugate via a 1-block code if and only if

there is a vertex map Φ : VG → VH such that the induced map Φc is a bijection.

Proof. If Φ∞ is a conjugacy, then it is a bijection on periodic points; we conclude Φc is a bijection.

For the converse, suppose Φ∞ is not a conjugacy. We proceed in cases.

(Case 1) If Φ∞ is not injective, there exist distinct points p, q ∈ XG such that Φ∞(p) = Φ∞(q).

(Case 1a) Suppose first that p, q disagree at |VG|2 + 1 consecutive indices, meaning the words

p[a,b], q[a,b] disagree at every index for some a, b ∈ Z with b − a = |VG|2 + 1. Consider all possible

pairs of states in G; there are |VG|2 such pairs. Thus there exist distinct indices c, d ∈ {a, a+1 . . . , b}

such that (pc, qc) = (pd, qd). But then Φc(p[c,d−1]) = Φc(q[c,d−1]).

45

(Case 1b) Suppose instead that p, q do not disagree at |VG|2 + 1 consecutive indices: there

exist indices a, b with a < b−1 such that p, q agree at indices a and b, but p, q disagree at every index

between a and b. Let w be any word connecting pb = qb to pa = qa. Then Φc(p[a,b]w) = Φc(q[a,b]w).

(Case 2) If Φ∞ is not surjective, suppose for a contradiction that Φc is bijective. Then every

periodic point in XH is mapped to by Φ∞. Since the periodic points are a dense subset of the

compact metric space XH , Proposition 3.2.1.2 contradicts the fact that Φ∞ is not surjective.

To verify that the cycle map Φc is bijective, we will test for injectivity explicitly, and rely on

counting arguments to check surjectivity. For injectivity, it turns out that checking cycles up to

length |VG|2 suffices.

Proposition 3.2.1.4. Suppose Φ∞ : XG → XH is a 1-block code between irreducible vertex shifts.

If Φc is injective on
⋃|VG|2
n=1 Cn(G), then Φc is injective.

Proof. Let c, d be distinct cycles of size |c| = |d| = k > |VG|2, and suppose Φc is injective on

all cycles of size less than k. There are |VG|2 possible pairs of states in G. Thus there exist

distinct indices a, b such that (ca, da) = (cb, db). That is, c[a,b−1], d[a,b−1] are cycles of the same

length and c[b,a−1], d[b,a−1] are cycles of the same length. Since c, d were distinct, we can assume

without loss of generality that c[a,b−1], d[a,b−1] are distinct. By our assumption that k was minimal,

Φc(c[a,b−1]) 6= Φc(d[a,b−1]). Thus Φc(c) 6= Φc(d).

Proposition 3.2.1.4 suggests the näıve algorithm of checking all cycles up to length |VG|2 to

verify injectivity of Φc. This algorithm is remarkably inefficient, however; letting n = |VG|, there

can be Ω(nn
2
) cycles of length up to n2, as is the case for the complete graph. Fortunately, these

checks can be performed much more efficiently, by rephrasing them as a search problem in a graph

built from pairs of vertices in G. This procedure is outlined in Algorithm 1.

Theorem 3.2.1.5. Let XG be a vertex shift and A = {1, 2, . . . ,m}. Then any given map Φ : VG →

A induces a map Φc :
⋃
n
Cn(G)→

⋃
n
An. Given Φ, deciding if Φc is injective can be determined in

O(|VG|4) time.

46

Proof. First we build the directed meta-graph M = (VM , EM) where VM = {(v1, v2) : v1, v2 ∈ VG}

and EM = {((v1, v2), (u1, u2)) : Φ(v1) = Φ(v2),Φ(u2) = Φ(v2), (v1, u1) ∈ EG, and (v2, u2) ∈ EG}.

That is, M is a graph on pairs of vertices from G, with an edge connecting pairs P1, P2 if and only

if (i) there is a pair of (possibly non-distinct) edges in G connecting the two vertices in P1 to the

vertices in P2, and (ii) the induced map on words of length two (i.e., edges) maps the two edges

together. M can be constructed in O(|VG|4) time.

Given M , the map Φc is injective if and only if there is no cycle in M which passes through

a vertex (v1, v2) ∈ VM with v1 6= v2. Furthermore, such a cycle in M exists if and only if M has

a strongly connected component containing an edge and a vertex (v1, v2) with v1 6= v2. Tarjan’s

strongly connected components algorithm [71] now applies, in O(|VM |+ |EM |) = O(|VG|4) time.

Putting the above results together with the higher-block codes gives the desired algorithm

to verify k-block conjugacies; the full conjugacy algorithm for k = 1 is outlined in Algorithm 2.

Corollary 3.2.1.6. Given a k-block code Φ∞ : Xk
G → XH between irreducible vertex shifts, deciding

if Φ∞ is a conjugacy is in P. In particular, it can be determined in O(|VG|4k) time.

Proof. Given G,H, we first pass to the kth higher block shift XG[k] of XG, recalling that Φ
[k]
∞ is a 1-

block code and Φ∞ is a conjugacy if and only if Φ
[k]
∞ is a conjugacy [51, Proposition 1.5.12]. We can

construct Φ
[k]
∞ : XG[k] → XH in time O(|VG[k] |+ |EG[k] |) = O(|VG[k] |2). Noting that |VG[k] | ≤ |VG|k,

it thus suffices to show the case k = 1.

By Theorem 3.2.1.3, Φ∞ is a conjugacy if and only if Φc is a bijection. Since k = 1,

Theorem 3.2.1.5 shows the injectivity of Φc can be determined in O(|VG|4) time. To show Φc

is surjective, it suffices to check that |Ci(G)| = |Ci(H)| for all i ∈ N. Letting A(G), A(H) be

the adjacency matrices of G,H, we note |Ci(G)| = tr(A(G)i), so our desired check is equivalent

to checking tr(A(G)i) = tr(A(H)i) for all i ∈ N [51, Proposition 2.2.12]. In fact, it suffices to

check up to i = |VG| [33, 46]. Calculating tr(A(G)i), tr(A(H)i) for all i ∈ {1, . . . , |VG|} can be

done by repeated multiplication in O(|VG|1+ω) = O(|VG|4) time, where ω is the exponent of matrix

47

multiplication.1

3.2.2 Reducible case

Several useful statements about conjugacy between irreducible vertex shifts fail to hold in

the reducible case. First, given a sliding block code Φ∞ : XG → XH between irreducible vertex

shifts, it is known that if Φ∞ is injective and G,H have the same topological entropy, then Φ∞

is a conjugacy [51, Corollary 8.1.20]. (The topological entropy of a shift X is defined as h(X) =

lim
n→∞

1
n log2 |Bn(X)|.) If the shifts are reducible, however, Φ∞ can satisfy these conditions but fail

to be surjective (Figure 3.1a). Second, we have from Theorem 3.2.1.3 that if Φ∞ is a 1-block

code between irreducible vertex shifts, then the bijectivity of Φc implies the bijectivity of Φ∞. In

the reducible case, Φc can be bijective while Φ∞ fails to be injective (Figure 3.1b) or surjective

(Figure 3.1a).

As an even stronger test, one might guess for reducible vertex shifts that if Φ∞ : XG → XH

is surjective and the induced maps between irreducible subgraphs are all conjugacies, then Φ∞ is a

conjugacy. If true, this statement would suggest applying the algorithm in Corollary 3.2.1.6 to each

irreducible subgraph, at which point one would only need to test surjectivity. Yet this statement

is also false; bijectivity of Φc implies neither the injectivity nor the surjectivity of Φ∞ (Figure 3.1).

By extending the argument of Theorem 3.2.1.3, one can correct the statement by adding a check for

diamonds: if Φ∞ is surjective, the induced maps between irreducible subgraphs are all conjugacies,

and Φ does not collapse a diamond, then Φ∞ is a conjugacy. Unfortunately, while this revised

statement does break the problem of verifying a proposed 1-block conjugacy into more manageable

pieces, how to turn it into a decision procedure, let alone an efficient algorithm, is far from clear.

To verify a potential conjugacy between vertex shifts efficiently, we will instead apply a more

direct reduction to the irreducible case. Given a 1-block code Φ∞ : XG → XH between reducible

vertex shifts, we will extend G and H to irreducible graphs while preserving the conjugacy or

1 Multiplication of n × n matrices can be performed in O(nω) time for some exponent ω. The smallest possible
number ω is known as the exponent of matrix multiplication, and its exact value is unknown. While the algorithm
typically performed by hand runs in O(n3) time, there are more efficient algorithms. The current known bounds are
2 ≤ ω < 2.3728639 [44].

48

(a)

a
b

d

c

e

f

g

a bd

c

e

f

g

(b)

a
b

d

c

e

f

g

a
b

d

ce f

g

Figure 3.1: Counterexamples showing various statements which hold in the irreducible case fail
in the reducible case. Note that all four shifts have the same topological entropy, h(X) = 1

4 .
(a) A 1-block code between two reducible shifts which restricts to conjugacies between the irre-
ducible components (and hence Φc is a bijection) but is not surjective. (b) A 1-block code between
two reducible shifts which restricts to conjugacies between the irreducible components but is not
injective.

non-conjugacy of Φ∞. The key operation for this extension is the following procedure, which adds

a new sink vertex to a sink component in such a way as to preserve conjugacy/non-conjugacy. We

will then apply this procedure to every sink component, and in reverse to every source component,

until we have enough structure to connect the new sink vertices back to the new source vertices

through a new vertex ∗, rendering both graphs irreducible.

Let T be a sink component of H and T ′ = Φ−1(T) be the subgraph of G which maps to T

under Φ∞. The procedure is as follows:

(1) Pick an arbitrary vertex v in T .

(2) Pick an arbitrary cycle c in T ending at v of length |c| ≤ |T |.

(3) Add the vertex t along with the edges (t, t), (v, t) to H. Call this new graph Ĥ.

49

(4) Select the vertices v′ ∈ Φ−1(v) which are followed by an infinite word w′ such that Φ(v′w′) =

vc∞. Call this set of vertices V ′.

(5) Add the vertex t′ and the edges {(v′, t′) : v′ ∈ V ′ ∪ {t′}} to G. Call this new graph Ĝ.

(6) Define Φ̂∞ : XĜ → XĤ by Φ̂(u) =

Φ(u), if u 6= t′

t, if u = t′
.

Proposition 3.2.2.1. Let Φ∞ : XG → XH be a 1-block code between reducible vertex shifts. Then

Φ̂∞ : XĜ → XĤ as described above is a conjugacy if and only if Φ∞ is a conjugacy.

Proof. Since XG is a subshift of XĜ (and similarly for H) and Φ̂∞ extends Φ∞, it immediately

follows that Φ∞ is a conjugacy whenever Φ̂∞ is. For the converse, suppose Φ̂∞ is not a conjugacy.

If Φ̂∞ is not injective, there are distinct points p1, p2 ∈ XĜ such that Φ̂∞(p1) = Φ̂∞(p2) = q.

If q ∈ XH , then p1, p2 ∈ XG by the definition of Φ̂∞, so Φ∞ is not injective. Note that by the

construction of XĤ , all points in XĤ \XH have form wvt∞, where v is the vertex chosen in (1),

t is the vertex added in (3), and w is some infinite word; so if q /∈ XH , then q = wvt∞. By

the definition of Φ̂∞, we have p1 = w1v1t
′∞, p2 = w2v2t

′∞. By the construction of N−(t′), there

exist infinite words w′1, w
′
2 such that v1w

′
1, v2w

′
2 are words in G and Φ(w′1) = c∞ = Φ(w′2). Thus

Φ∞(w1v1w
′
1) = Φ∞(w2v2w

′
2), and Φ∞ is not injective.

If Φ̂∞ is not surjective, then there exists p ∈ XĤ which is not mapped to. If p ∈ XH , then

Φ is not surjective. Otherwise, p /∈ XH , so p = wvt∞. But again noting the construction of N−(t),

the point wvc∞ is not mapped to.

We now construct the final graphs G∗, H∗ using the above procedure as well as one additional

step below. Let T1, . . . , Tm be the sink components of H, and S1, . . . , S` the source components,

with T ′i = Φ−1(Ti) and S′i = Φ−1(Si) the corresponding inverse image subgraphs of G. We apply

the above procedure iteratively to every sink component, and every source component by reversing

the edge direction in G,H, applying the procedure, and reversing edges back. Let Ĝ, Ĥ denote

the graphs after applying the procedure to the m sinks and ` sources. Note that, by construction,

50

each sink or source component in Ĥ consists only of a single state. Furthermore, the preimage

of each of these states under the induced map Φ̂ in Ĝ also consists of a single state. Denote the

source states in Ĥ as {s1, . . . , s`} and the sink states as {t1, . . . , tm}. In Ĝ, denote the preimages

as s′i = Φ−1(si), t
′
j = Φ−1(tj). We extend Ĥ, Ĝ to the irreducible graphs H∗, G∗ as follows:

(1) Add a new vertex ∗ to both Ĥ and Ĝ.

(2) In H∗, set N−(∗) = {t1, . . . , tm}, N+(∗) = {s1, . . . , s`}. In G∗, set N−(∗) = {t′1, . . . , t′m},

N+(∗) = {s′1, . . . , s′`}.

(3) Define Φ∗∞ : XG∗ → XH∗ by Φ∗(u) =

Φ̂(u), if u 6= ∗

∗, if u = ∗
.

Proposition 3.2.2.2. Let Φ∞ : XG → XH be a 1-block code between reducible vertex shifts. Then

Φ∗∞ : XG∗ → XH∗ as described in the construction above is a conjugacy if and only if Φ∞ is a

conjugacy.

Proof. By Proposition 3.2.2.1, Φ̂∞ : XĜ → XĤ is a conjugacy if and only if Φ∞ is a conjugacy,

where, as above, the graphs Ĝ, Ĥ immediately precede the addition of the vertex ∗. As in the proof

of Proposition 3.2.2.1, XĜ is a subshift of XG∗ (and similarly for Ĥ) and Φ∗∞ extends Φ̂∞, so Φ̂∞

is a conjugacy if Φ∗∞ is. For the other direction, suppose Φ∗∞ is not a conjugacy.

First suppose Φ∗∞ is not injective. Since G∗, H∗ are irreducible, we have distinct cycles c, d

in G∗ from Theorem 3.2.1.3 such that Φ∗c(c) = Φ∗c(d). Without loss of generality, c, d pass through

∗. Since Φ∗ is bijective on {s1, . . . , s`, t1, . . . , tm}, we have c = ∗siw1tj , d = ∗siw2tj . But then Φ̂

collapses the diamond (siw1tj , siw2tj), so by Lemma 3.1.1, Φ̂∞ is not injective.

Now suppose Φ∗∞ is not surjective. Again by Theorem 3.2.1.3, we know there is a cycle c

which is not in the image of Φ∗c . Without loss of generality, we can assume c = ∗siwtj . By the

construction of N−(∗), N+(∗), we conclude that siwtj is not in the image of Φ̂. Thus s∞i wt
∞
j is a

point in XĤ which is not in the image of Φ̂∞.

We now have that given reducible vertex shifts XG, XH and a proposed 1-block conjugacy

51

between them, the shifts can be embedded into irreducible shifts such that the conjugacy or non-

conjugacy is preserved. Next we show this embedding can be performed efficiently; the procedure

described in the proof is outlined in Algorithm 5.

Theorem 3.2.2.3. Given reducible vertex shifts XG, XH and a 1-block code as Φ : VG → VH , the

graphs G∗ and H∗ can be constructed in O(|VG|3) time.

Proof. Let T be an arbitrary sink component in H and T ′ be the subgraph Φ−1(T) of G. We

will show the corresponding sink vertices t, t′ can be added in O(|VT ′ |3) time. Iterating over

all sink components T ∈ T and source components S ∈ S will give an overall complexity of

O(
∑

T ′∈T ′ |VT ′ |3 +
∑

S′∈S′ |VS′ |3) = O(|VG|3) time. (Adding the vertex ∗ takes linear time.)

Let v be an arbitrary vertex of T , and let c be the shortest cycle in T through v, which

can be computed using breadth-first search in O(|VT | + |ET |) = O(|VH |2) = O(|VG|2) time. Note

that |c| ≤ |T |, so we have completed steps 1 and 2. Step 3 is constant time. The only nontrivial

step that remains is step 4, the computation of the set V ′ ⊆ VT ′ , from which steps 5 and 6 follow

trivially in linear time.

Let C = (VC , EC) be the subgraph of T corresponding to c, and let C ′ = (VC′ , EC′) be

the subgraph of T ′ which maps onto C as follows: VC′ = Φ−1(VC), and EC′ = {(u′, v′) ∈ ET ′ :

(Φ(u′),Φ(v′)) ∈ EC}. The subgraph C ′ can be constructed in O(|VT ′ |2) time. Note that infinite

walks in C ′ starting from any v′ ∈ Φ−1(v) are precisely the walks in T ′ that map onto c∞, and

moreover, there is an infinite walk in C ′ starting from v′ if and only if there is a path in C ′ from v′

to a cycle in C ′. We therefore define V ′ ⊆ Φ−1(v) ⊆ VC′ to be the set of nodes v′ such that there is

a path in C ′ from v′ to a cycle in C ′. To compute V ′, we can simply run breadth-first search from

each vertex in Φ−1(v), in O(|Φ−1(v)| · (|VC′ |+ |EC′ |)) = O(|VT ′ |3) time.

We have now seen an efficient procedure to embed a pair of reducible graphs into a pair

of irreducible graphs, such that the original pair admits a 1-block conjugacy if and only if the

embedded pair does. Moreover, the embedded irreducible graphs have at most twice the number

of vertices as the original graphs. With this procedure in hand, we can extend our verification

52

algorithm to the reducible case.

Corollary 3.2.2.4 (Theorem A). Given vertex shifts XG, XH and a k-block code Φ∞ as Φ : V k
G →

VH , deciding if Φ∞ is a conjugacy can be determined in O(|VG|4k) time.

Proof. If G,H are irreducible, Corollary 3.2.1.6 applies immediately. For the reducible case, as in

Corollary 3.2.1.6, by passing to the kth higher block shift it suffices to show the case k = 1. By

Theorem 3.2.2.3, we can embed G,H into the irreducible shifts G∗, H∗ in O(|VG|3) time. By Corol-

lary 3.2.1.6, we can verify if Φ∗∞ (and hence Φ∞) is a conjugacy in O(|VG∗ |4) time. Furthermore,

|VG∗ | < 2|VG|, so this verification runs in O(|VG|4) time.

3.3 Deciding k-block conjugacy

We now turn to the question of deciding k-block conjugacy. Specifically, we wish to under-

stand the complexity of the problem k-BC, which is to decide given directed graphs G,H whether

the vertex shifts XG, XH are conjugate via a k-block code Φ∞ : XG → XH . Note that the de-

scription size of Φ is polynomial in |VG| and |VH |, and thus from Corollary 3.2.2.4 we know that a

potential k-block conjugacy can be verified in polynomial time; hence, k-BC is in NP. We will show

that k-BC is GI-hard for all k, where GI is the class of problems with a polynomial-time Turing

reduction to the Graph Isomorphism problem [42]. (A graph isomorphism is bijection between

the vertices of two graphs which preserves the edges/non-edge relation; the Graph Isomorphism

problem is to decide if two given undirected graphs are isomorphic. See §2.1.)

Definition 3.3.1. Given directed graphs G,H, the k-Block Conjugacy Problem, denoted k-

BC, is to decide if there is a k-block conjugacy Φ∞ : XG → XH between the vertex shifts XG and

XH .

To begin, we give the straightforward result that the case k = 1 is GI-hard, essentially because

1-block conjugacies between vertex shifts for equal sized graphs must be isomorphisms.

Theorem 3.3.2. The 1-Block Conjugacy Problem, 1-BC, is GI-hard.

53

Proof. Given strongly connected graphs directed G,H with |VG| = |VH |, we show that the shifts

XG, XH are conjugate via 1-block code if and only if the graphs are isomorphic (cf. [51, Exer-

cise 2.2.14]). The result then follows as graph isomorphism between strongly connected directed

graphs is GI-hard, by the usual reduction from the undirected case (replace each edge with two

directed edges).

First suppose Ψ : VG → VH is a graph isomorphism. As Ψ(v1v2) is a legal word in XH for all

words of length 2, by definition of a graph isomorphism, we have that Ψ∞ : XG → XH is a valid

1-block code. Letting Φ = Ψ−1 : VH → VG, we have Ψ∞(Φ∞((xi)i∈Z)) = (Ψ(Φ(xi)))i∈Z = (xi)i∈Z

for all x ∈ XH , and Φ∞(Ψ∞((xi)i∈Z)) = (Φ(Ψ(xi)))i∈Z = (xi)i∈Z for all x ∈ XG. Thus, Φ∞ is the

2-sided inverse of Ψ∞, and Ψ∞ is a 1-block conjugacy.

For the other direction, suppose Φ∞ : XG → XH is a 1-block conjugacy. Then {Φ(v) : v ∈ VG}

must be exactly the set of words of length 1 in XH , i.e., the vertices of H. Since |VG| = |VH |,

Φ : VG → VH is a bijection. Also, for any edge (v1, v2) ∈ EG, we have Φ(v1v2) = Φ(v1)Φ(v2), so

(Φ(v1),Φ(v2)) ∈ EH as Φ∞ is a well-defined sliding block code. Even more, consider any pair v3, v4

of vertices in VG such that (v3, v4) /∈ EG. Noting that Φ(v3)Φ(v4) has a unique preimage as Φ is a

bijection and Φ∞ is surjective, we have (Φ(v3),Φ(v4)) /∈ EH . Thus Φ : VG → VH is a bijection on

vertices which preserves the edge relationship; that is, Φ is a graph isomorphism.

Next, we will show k-BC is GI-hard for all k, by reduction from the 1-block case. Specifically,

given directed graphs G,H, we will construct graphs G′, H ′ such that there exists a 1-block con-

jugacy Φ∞ : XG → XH if and only if there exists a k-block conjugacy Φ′∞ : XG′ → XH′ . To form

G′, we replace every vertex v ∈ VG with a path vinv1v2 · · · vk−1 followed by the diamond with sides

vk−1v
t
kvout and vk−1v

b
kvout (Figure 3.2a). To form H ′, we replace every vertex u ∈ VH with two

parallel paths uinu
t
1u
t
2 · · ·utkuout and uinu

b
1u
b
2 · · ·ubkuout (Figure 3.2b).

Lemma 3.3.3. Given directed graphs G,H, let G′, H ′ be constructed as above. If there exists

a k-block conjugacy Φ′∞ : XG′ → XH′, then for all v ∈ VG there exists u ∈ VH such that

Φ′(vinv1 · · · vk−1) = uin.

54

(a) v vin v1 · · · vk−1

vtk

vbk

vout

(b) u uin

ut1

ub1

· · ·

· · ·

utk−1

ubk−1

utk

ubk

uout

Figure 3.2: The vertex gadgets for (a) each vertex v in G, and (b) each vertex u in H.

Proof. Suppose for a contradiction that Φ′∞ is a k-block code such that for some v ∈ VG we have

Φ′(vinv1 · · · vk−1) 6= uin for all u ∈ VH . We break the argument into two cases.

First, suppose Φ′(vinv1 · · · vk−1) = uti. (The case ubi is identical.) Since the shift map com-

mutes with sliding block codes, we must have Φ′(v1 · · · vk−1v
t
k) = Φ′(v1 · · · vk−1v

b
k) = z where

z ∈ {uti+1, uout}. Picking any edge (v, v̂) ∈ EG and continuing to slide the block window, we

must have Φ′(v̂inv̂1 · · · v̂k−1) ∈ {ûti, ûbi} for some û ∈ VH . Without loss of generality, assume

Φ′(v̂inv̂1 · · · v̂k−1) = ûti. Furthermore, since there is only one word in H ′ between uti and ûti of

proper length but two words in G′ between v̂in and vin, we have

Φ′(vin · · · vtkvoutv̂in · · · v̂k−1) = uti · · ·utkuoutûinû
t
1 · · · ûti = Φ′(vin · · · vbkvoutv̂in · · · v̂k−1).

That is, Φ′ collapses a diamond, so by Lemma 3.1.1, Φ′ is not a conjugacy.

Second, suppose Φ′(vinv1 · · · vk−1) = uout. Pick any edge (v̂, v) ∈ EG. Then without

loss of generality, Φ′(v̂outvin · · · vk−2) = utk. Continuing to slide the block window, we have

Φ′(v̂in · · · v̂k−1) = ûout for some û ∈ VH . Again, there are two words in G′ between v̂in and vin

but only one word in H ′ between ûout and uout which passes through utk. Thus, we have

Φ′(v̂in · · · v̂tkv̂outvin · · · vk−1) = ûoutuin · · ·utkuout = Φ′(v̂in · · · v̂bkv̂outvin · · · vk−1),

so Φ′ again collapses a diamond, and by Lemma 3.1.1, Φ′ is not a conjugacy.

55

We now show that graphs G,H admit a 1-block conjugacy if and only if the graphs G′, H ′

constructed as above admit a k-block conjugacy. To do this, we first introduce a natural operation

on shift spaces, which “stretches” each point by a factor N . Given alphabet A, and any point

p = · · · v.v′ · · · ∈ AZ, we write p〈N〉 = · · · v · · · v.v′ · · · v′ · · · to be the point p with each symbol

repeated N times. Given a shift X over alphabet A, we define the shift space X〈N〉 = {σi(p〈N〉) :

p ∈ X, i ∈ Z} where σ is the shift map. In particular, X〈N〉 contains all shifts of the Nth expansion

of points in X. While in general X〈N〉 is not a vertex shift when N > 1, it is still structured enough

that the following lemma is immediate.

Lemma 3.3.4. Given shifts X,Y , there exists a 1-block conjugacy Φ∞ : X → Y if and only if

there exists a 1-block conjugacy Φ
〈N〉
∞ : X〈N〉 → Y 〈N〉, where Φ = Φ〈N〉 as block maps.

To make use of this definition and lemma, we will project points in XG′ , XH′ to X
〈k+2〉
G , X

〈k+2〉
H

by simply erasing the subscript and superscript information. Formally, we define the 1-block

map ΨG : VG′ → VG by ΨG(u) = v for u ∈ {vin, v1, . . . , vk−1, v
t
k, v

b
k, vout}, and let πG = ΨG

∞ :

XG′ → X
〈k+2〉
G . We define ΨH , πH similarly. Letting SGp :=

(
πG
)−1

(p) ⊆ XG′ , we have that

{SGp : p ∈ X〈k+2〉
G } is a partition of the points in XG′ . (Similarly for SHq and XH′ .)

Theorem 3.3.5. Given graphs G,H, construct G′, H ′ as above. Then there exists a 1-block con-

jugacy Φ∞ : XG → XH if and only if there exists a k-block conjugacy Φ′ : XG′ → XH′.

Furthermore, the construction of G′, H ′ can be done in polynomial time, so 1-BC ≤m k-BC.

Proof. The fact that G′, H ′ can be constructed in polynomial time is obvious. Assuming the main

theorem statement, the fact that 1-BC ≤m k-BC follows immediately. We now prove the main

theorem statement.

(⇒) Suppose there exists a 1-block conjugacy Φ∞ : XG → XH . By Lemma 3.3.4, there is a

1-block conjugacy Φ
〈k+2〉
∞ : X

〈k+2〉
G → X

〈k+2〉
H . Define the k-block code Φ′∞ : XG′ → XH′ with no

memory by

• Φ′(vin · · ·) = Φ(v)in

56

• Φ′(vi · · · vtk · · ·) = Φ(v)ti, i ∈ {1, . . . , k}

• Φ′(vi · · · vbk · · ·) = Φ(v)bi , i ∈ {1, . . . , k}

• Φ′(vout · · ·) = Φ(v)out

To show that Φ′∞ is a bijection, we will show that for any p ∈ X
〈k+2〉
G and q ∈ X

〈k+2〉
H with

Φ
〈k+2〉
∞ (p) = q, the map Φ′∞ : SGp → SHq is a bijection. The result then follows because Φ

〈k+2〉
∞ is a

bijection between X
〈k+2〉
G and X

〈k+2〉
H , and the sets {SGp : p ∈ X〈k+2〉

G }, {SHq : q ∈ X〈k+2〉
H } partition

XG′ , XH′ .

We first claim that Φ′∞(SGp) ⊆ SHq , which is to say, for every p′ ∈ XG′ such that πG(p′) = p, we

have πH(Φ′∞(p′)) = q. Diagramatically, we are claiming that the diagram in Figure 3.3 commutes.

To see this, note that by construction of Φ′, for all p′ ∈ XG′ and all i ∈ Z, we have ΨH(Φ′∞(p′)i) =

Φ(ΨG(p′i)) = Φ〈k+2〉(ΨG(p′i)). The condition πG(p′) = ΨG
∞(p′) = p implies ΨG(p′i) = pi for all

i ∈ Z. Combining the above with the observation that Φ〈k+2〉(pi) = qi gives ΨH(Φ′∞(p′)i) = qi,

which implies the claim.

To see that Φ′∞ is injective on SGp , consider distinct points p′, p′′ ∈ SGp which differ at index

i. Since πG(p′) = πG(p′′), we can assume without loss of generality that p′i = vtk and p′′i = vbk. Then

Φ′(p′[i−k,i]) = Φ′(v1 · · · vk−1v
t
k) = Φ(v)t1 6= Φ(v)b1 = Φ′(v1 · · · vk−1v

b
k) = Φ′(p′′[i−k,i]),

so Φ′∞(p′) 6= Φ′∞(p′′).

(⇐) Suppose there exists a k-block conjugacy Φ′∞ : XG′ → XH′ . Without loss of generality,

assume Φ′∞ has no memory. By Lemma 3.3.3, for every v ∈ VG, there exists u ∈ VH such that

Φ′(vin · · ·) = uin. Define the 1-block code Φ∞ : XG → XH by Φ(v) = ΨH(Φ′(vinv1 · · · vk−1)). We

claim Φ∞ is a conjugacy. To show this, we instead will show Φ
〈k+2〉
∞ defined by the same block

map is a conjugacy. To see Φ
〈k+2〉
∞ is surjective, consider any q ∈ X〈k+2〉

H . Picking any q′ ∈ SHq , set

p′ = Φ′−1
∞ (q′) and p = πG(p′). We will now show Φ

〈k+2〉
∞ (p) = q, so the diagram in Figure 3.3 is

commutative and Φ∞ is surjective. For all i ∈ Z,

Φ(pi) = ΨH(Φ′((pi)in · · · (pi)k−1)) = ΨH((qi)in) = qi. (3.1)

57

XG′ XH′

X
〈k+2〉
G X

〈k+2〉
H

Φ′∞

πG=ΨG∞ πH=ΨH∞

Φ
〈k+2〉
∞

p′ q′

p q

Φ′∞

πG πH

Φ
〈k+2〉
∞

Figure 3.3: Given Φ′ or Φ, one can construct the other such that this diagram commutes.

To see Φ
〈k+2〉
∞ is injective, consider distinct p1, p2 ∈ X

〈k+2〉
G . Then SGp1 6= SGp2 . Since Φ′∞

is a conjugacy, Φ′∞(SGp1) ∩ Φ′∞(SGp2) = ∅. By Lemma 3.3.3, there exist q1, q2 ∈ X〈k+2〉
H such that

SHq1 = Φ′∞(SGp1) and SHq2 = Φ′∞(SGp2). By the construction of Φ (and shown in (3.1)), Φ
〈k+2〉
∞ (p1) =

q1 6= q2 = Φ
〈k+2〉
∞ (p2), so Φ

〈k+2〉
∞ is injective.

Remark 3.3.6. The same construction could plausibly give a reduction from m-BC to `-BC where

` = (m− 1)(k + 2) + k, though if true, the proof would be much more involved.

Combining the reduction in Theorem 3.3.5 with Theorem 3.3.2 therefore gives GI-hardness

for all k.

Corollary 3.3.7 (Theorem B). k-BC is GI-hard for all k.

3.4 Reducing representation size

Thus far we have addressed two problems. We first gave an efficient algorithm, given directed

graphs G,H and k-block map Φ, to verify whether Φ∞ : XG → XH is a conjugacy. We then showed

that the problem of deciding whether XG and XH are conjugate, given only G and H, is GI-hard.

We now address a problem given only G and an integer `: whether we can find a k-block code

which reduces the size of G by ` vertices while preserving conjugacy.

Definition 3.4.1. Given a directed graph G and integer `, the k-Block Reduction Problem,

denoted k-BR, is to decide if there exists a directed graph H with |VH | = |VG| − ` such that the

vertex shifts XG and XH are conjugate via a k-block code.

We will show this problem is NP-complete for the case k = 1, by modifying the hardness

proof of the State Amalgamation Problem (SAP), which asks if ` consecutive amalgamations can

58

be performed on a graph G [22]. The proof that SAP is NP-hard shows that the set of graphs

satisfying a certain structure property is closed under the amalgamation operation. This structure

is then leveraged to encode an NP-complete problem (Hitting Set). While 1-block codes are more

general than sequences of amalgamations (Figure 2.6), we find that, surprisingly, the same set of

graphs is also closed under 1-block conjugacy. In fact, the rest of the construction of [22] suffices

as well, though much of the argument needs to be strengthened to the general 1-block case.

We begin by recalling the structure property.

Definition 3.4.2 ([22]). A directed graph G satisfies the structure property if it is essential

and there exists a partition {{α}, A,B,C} of VG such that the following four conditions hold.

(1) N+(α) = N−(α) = {α} ∪A ∪ C.

(2) For each a ∈ A, N−(a) = {a, α} and {a, α} ⊆ N+(a) ⊆ {a, α} ∪B.

(3) For each c ∈ C, N+(c) = {c, α} and {c, α} ⊆ N−(c) ⊆ {c, α} ∪B.

(4) For each b ∈ B, N−(b) ⊆ A and N+(b) ⊆ C.

• • · · · • •C

• • · · · • •B

• • · · · • •A

α

Figure 3.4: A graph which satisfies the structure property.

59

See Figure 3.4 for an example. We now show that the structure property is preserved under

1-block conjugacy.

Lemma 3.4.3. Let G be a graph with the structure property having {{α}, A,B,C} as the par-

tition of VG, and let Φ∞ : XG → XH be a 1-block conjugacy. Then Φ(v1) = Φ(v2) implies

v1 = v2 or v1, v2 ∈ B. Thus H also satisfies the structure property where the vertex partition is

{{Φ(α)},Φ(A),Φ(B),Φ(C)}.

Proof. First note that if Φ : XG → XH is a 1-block conjugacy from a graph G with vertex partition

{{α}, A,B,C} such that Φ(v1) = Φ(v2) implies v1 = v2 or v1, v2 ∈ B, then the fact that H satisfies

the structure property with vertex partition {{Φ(α)},Φ(A),Φ(B),Φ(C)} follows immediately. Now

suppose for a contradiction that v1 6= v2 ∈ VG and Φ(v1) = Φ(v2); we proceed in cases.

Case 1: v1, v2 ∈ {α} ∪A ∪ C. Then Φ∞(v∞1) = Φ∞(v∞2) and Φ∞ is not a conjugacy.

Case 2: v1 = α, v2 ∈ B. Let a ∈ A, c ∈ C be such that av2c is a word in XG. (Such a, c exist as G

is essential.) Then Φ∞((av2cα)∞) = Φ∞((aαcα)∞) and Φ∞ is not a conjugacy.

Case 3a: v1 ∈ A, v2 ∈ B, (v1, v2) /∈ EG. Let a ∈ A be such that (a, v2) ∈ EG. Note that a 6= v1.

Consider the point

p = (Φ(a)Φ(v2)Φ(α))∞ = (Φ(a)Φ(v1)Φ(α))∞

in XH of period 3. Due to G having the structure property and our assumption that Φ∞ is a

1-block conjugacy, the preimage of p must be defined by a 3-cycle whose vertices are contained

in {α} ∪ A ∪ C. In particular, the preimage must trace a self-loop, so we know Φ(a) = Φ(α) or

Φ(a) = Φ(v1) or Φ(v1) = Φ(α). Since we know Φ is injective on {α} ∪ A ∪ C by Case 1, none of

these are possible.

Case 3b: v1 ∈ A, v2 ∈ B, (v1, v2) ∈ EG. Let c ∈ C be such that (v2, c) ∈ EG. Consider the point

p = (Φ(v2)Φ(c)Φ(α))∞ = (Φ(v1)Φ(c)Φ(α))∞

in XH of period 3. Again by the requirement that the preimage of p traces a self-loop, we know

Φ(v1) = Φ(c) or Φ(v1) = Φ(α) or Φ(α) = Φ(c). However, all of these situations violate the

injectivity of Φ on {α} ∪A ∪ C.

60

Case 4: v1 ∈ C, v2 ∈ B. This is identical to Case 3 where the edges in the graph have been

reversed.

Pausing to note that 1-block conjugacies between graphs with the structure property are

quite restricted, it tempting to believe that the added restriction of the structure property will

prevent “tangling” of cycles as in Figure 2.6 and cause every 1-block conjugacy to be a sequence

of only amalgamations; however, as shown in Figure 3.5, this also is not true.

b1 b2 b3 b4 b5

a1 a2 a3

c1 c2 c3

α

a1 a2 a3

b

c1 c2 c3

α
bi 7→ b

Figure 3.5: A minimal counterexample to the conjecture that any 1-block conjugacy Φ∞ : XG →
XH between graphs with the structure property can be realized as a sequence of only amalgama-
tions.

As in [22], we will need a “weight widget” which acts as a weighted switch, using the following

notation. Let v be a vertex with N−(v) = D and N+(v) = E. We will write v : [D,E] in this

situation, and as a slight abuse of notation, we will drop the curly brackets if E or D is a singleton

and write v : [u,E]. Additionally, we extend this notation to sets S of vertices and write S : [D,E]

to mean
⋃
s∈S N

−(s) = D and
⋃
s∈S N

+(s) = E.

Definition 3.4.4 ([22]). Let G satisfy the structure property with VG = {α} ∪A∪B ∪C, and let

K > 0 be a fixed even integer. Then for nonempty subsets A∗ ⊆ A,C∗ ⊆ C, the weight widget

w = weight[A∗, C∗] is the following collection of vertices.

61

C∗

v

A∗

bw1 bw2 bw3 bw4

aw1 aw2

cw1 cw2

weight[A∗, C∗]

Figure 3.6: The weight widget weight[A∗, B∗] with K = 4.

• Aw = {aw1 , . . . , awK/2}

• Bw = {bw1 . . . , bwK}

• Cw = {cw1 , . . . , cwK/2}

where Aw ∩A∗ = ∅ = Cw ∩ C∗, and for each i ∈ {1, . . . ,K/2} we have

• b2i−1 : [A∗ ∪ {aw1 , . . . , awi−1}, cwi]

• b2i : [awi , C∗ ∪ {cw1 , . . . , cwi }].

Moreover, we require these to be the only images of Aw in B, i.e., B ∩ N+(awi) ⊆ Bw for all

awi ∈ Aw, and similarly for the preimage of Cw. For a given 1-block conjugacy Φ∞, letting S =

Φ−1(Φ(bw1)) \Bw = {b ∈ B : Φ(b) = Φ(bw1)} \Bw, we say w is activated if S : [A∗, C∗].

See Figure 3.6 for an example. The term “activate” comes from the following fact, which

we show below in Lemma 3.4.6(1): if S is a singleton, then the construction of the weight widget

allows the states S ∪ Bw to be amalgamated sequentially into a single state. For example, the

vertex v in Figure 3.6 can activate the weight widget shown. The next two lemmas show that these

amalgamations cannot be performed if the widget is not activated.

Lemma 3.4.5. Let w = weight[A∗, C∗] be a weight widget in G. If Φ∞ : XG → XH is a 1-

block conjugacy between graphs with the structure property, then for any v ∈ VH , the statement

bw` ∈ Φ−1(v) for ` > 1 implies bw`−1 ∈ Φ−1(v) or |Φ−1(v)| = 1.

62

Proof. By contrapositive, suppose |Φ−1(v)| > 1 and there exists bw` ∈ Φ−1(v) such that bw`−1 /∈

Φ−1(v). Without loss of generality, let ` be the largest such subscript. We have two cases.

Case 1: ` is even. We claim there must exist a ∈ N−(v)\{Φ(aw`/2), . . . ,Φ(awK/2)}. To see this claim,

first note the weight widget construction guarantees that for every b ∈ B\Bw, we have N−(b)∩Aw =

∅. Also by the weight widget construction, for any bw2i+1 ∈ Bw, we have A∗ ⊆ N−(bw2i+1) \ Aw.

Noting that weight[A∗, B∗] is not defined when A∗ = ∅ and G is not essential when N−(b) = ∅, if

we have Φ−1(v) \ {bw2i : bw2i ∈ Bw} 6= ∅, then we must have N−(v) \Φ(Aw) 6= ∅. That is, the claim is

satisfied in the case when Φ−1(v) 6⊆ {bw2i : bw2i ∈ Bw}. Assuming now that Φ−1(v) ⊆ {bw2i : bw2i ∈ Bw},

we note our earlier assumption that |Φ−1(v)| > 1 guarantees there exists bw2j ∈ Φ−1(v) for some

index 2j 6= `. By our other assumption that ` is the largest such subscript, we have 2j < `. Then

Φ(awj) ∈ N−(v), and the claim follows. Proceeding, we then have Φ(a)vΦ(cw`/2) is a word in XH ;

however, N−(cw`/2) = {bw`−1} ∪ {bw` , bw`+2, . . . , b
w
K} and for all bw2i ∈ N−(cw`/2) \ {bw`−1}, (a, bw2i) /∈ EG.

Since bw`−1 /∈ Φ−1(v) by assumption, this word has no preimage in XG, so Φ∞ is not a conjugacy.

Case 2: ` is odd. Using an argument symmetric to the one in case 1, we get that there must exist

c ∈ N+(v) \ {Φ(cw(`+1)/2), . . . ,Φ(cwK/2)}. Then Φ(aw(`−1)/2)vΦ(c) is a word in XH with no preimage,

so Φ∞ is not a conjugacy.

Lemma 3.4.6. Suppose w = weight[A∗, C∗] is a weight widget in G. Then

(1) Suppose Φ∞ : XG → XG′ is a 1-block conjugacy such that Φ−1(Φ(bwi)) = {bwi } for all

bwi ∈ Bw and VG′ contains v : [A∗, B∗]. Defining Φ′∞ : XG → XH by

Φ′(u) =

Φ(u), if u /∈ Φ−1(v) ∪Bw

v, if u ∈ Φ−1(v) ∪Bw

where H is the minimal graph induced by G and Φ′, then Φ′ is a 1-block conjugacy with

|VH | = |VG′ | −K.

(2) If w = weight[A∗, C∗] is not activated and Φ∞ : XG → XH is a 1-block conjugacy, then

Φ−1(Φ(bwi)) is a singleton for every bwi with i > 1.

63

Proof. (1) Consider the sequence of splittings followed by the sequence of amalgamations which

transforms G into G′. Then note that by the construction of the weight widget, {v : [A∗, C∗]}∪Bw

can be amalgamated sequentially for an additional K amalgamations.

(2) Suppose bw1 ∈ Φ−1(v) for some v ∈ VH and consider V = Φ−1(v) \ Bw. By Lemma 3.4.5

it suffices to show bw2 /∈ Φ−1(v). By definition of w not being activated, we have two cases.

Case 1: N−(V) 6= A∗. If there is some a ∈ N−(V) \ A∗, then Φ(a)vΦ(cw1) is a word in XH . Since

there is no state in G connecting a with cw1 , the word has no preimage in XG and Φ∞ is not a

conjugacy. Otherwise, there is some a ∈ A∗ \ N−(V). By contrapositive, suppose bw2 ∈ Φ−1(v).

Picking any c ∈ C∗, we have Φ(a)vΦ(c) is a word in XH . Since there is no state in Φ−1(v) connecting

a with c, the word has no preimage and Φ∞ is not a conjugacy.

Case 2: N+(V) 6= C∗. By contrapositive, suppose bw2 ∈ Φ−1(v). If there is some c ∈ N+(V) \ C∗,

then Φ(aw1)vΦ(c) is a word in XH . Since there is no state in G connecting aw1 with c, the word has

no preimage and Φ∞ is not a conjugacy. Otherwise, there is some c ∈ C∗ \ N+(V). Considering

any a ∈ N−(V), we have Φ(a)vΦ(c) is a word in XH . Since there is no state in Φ−1(v) connecting

a with c, the word has no preimage and Φ∞ is not a conjugacy.

We now define the Hitting Set problem, which is NP-complete [38], and state a lemma which

we will need in the proof.

Definition 3.4.7. Let S = {S1, . . . , Sm} be a collection of sets with
⋃
i Si = U . Given a subset

S ⊆ U , we define its hit set as hit(S) = {Si : S ∩ Si 6= ∅}. Given S, U , and an integer t, the

Hitting Set problem, denoted HittingSet, is to decide whether there is a set H of cardinality t

such that hit(H) = S. We will also overload this notation, and write hit(s) to mean hit({s}) for

s ∈ U .

Lemma 3.4.8 ([22]). Let (S, U, t) be an instance of HittingSet. Suppose for some t ≤ |S| there is

no H with |H| ≤ t and hit(H) = S. Then for all H ⊆ U , |hit(H)| − |H| < |S| − t.

We now show that 1-BR is NP-complete, by reduction from HittingSet. Given the lemmas

developed above, the result essentially follows from the argument in [22], with minor modifications

64

for the 1-block case; for completeness, we give the full proof.

Theorem 3.4.9 (Theorem C). 1-BR is NP-complete.

Proof. First we show 1-BR is in NP. Given a vertex shift XG and Φ : VG → {1, 2, . . . , |VG| − n}

from a proposed 1-block conjugacy Φ∞, we construct the minimal image graph G′ such that Φ∞ :

XG → XG′ is well-defined. In particular, VG′ = {Φ−1(u) : u ∈ VG} and EG′ = {(Φ−1(v1),Φ−1(v2)) :

(v1, v2) ∈ EG}. By Corollary 3.2.2.4, we can determine if Φ∞ is a conjugacy in O(|VG|4) time.

To show hardness, we reduce from HittingSet; let S = {S1, . . . , Sm} be the collection of sets

and t the given integer. Defining n = |U | for U =
⋃
i Si, we set the parameter K = 5mn for the

weight widgets. Then, as in [22], we build the following graph G = (VG, EG) with the structure

property VG = A ∪B ∪ C ∪ {α}.

(1) Start with A = S, B = ∅, C = U ∪ {β}, where β is a new vertex.

(2) For each u ∈ A, v ∈ C, add buv : [u, v]. That is, add the vertex bSis and path Si → bSis → s

for every (s, Si) with s ∈ Si as well as the vertex bSiβ and path Si → bSiβ → β for every

Si ∈ S.

(3) For each (s, Si) with s ∈ Si, add the weight widget w = weight[Si, {s, β}] = (Aw, Bw, Cw).

Note that Aw will added to A, Bw to B, and Cw to C.

(4) For each s ∈ U , add the weight widget weight[hit(s), {s}].

(5) Finally, add the vertex α and the necessary edges for G to have the structure property, i.e.,

add the edges {(a, α), (α, a) : a ∈ A} ∪ {(b, α), (α, b) : b ∈ B} ∪ {(v, v) : v ∈ A ∪B ∪ {α}}.

Summarizing, if W is the collection of weight widgets added, A = S ∪
⋃
w∈W Aw, B = {bSis : Si ∈

S, s ∈ Si} ∪ {bSiβ : Si ∈ S} ∪
⋃
w∈W Bw, and C = U ∪ {β} ∪

⋃
w∈W Cw. (See Figure 3.7 for an

example with S = {{u1, u2}, {u2, u3}} where only steps (1), (2), and (5) have been performed.)

We will show there is a hitting set of size t if and only if there is a 1-block conjugacy

Φ∞ : XG → XG′ such that |VG′ | ≤ |VG| − (m + n − t)K. The idea behind the reduction is that

65

bS1u1 bS1u2 bS2u2 bS2u3 bS1β bS2β

S1 S2

u1 u2 u3 β

α

Figure 3.7: The graph constructed in Theorem 3.4.9 (without any weight widgets attached) for the
HittingSet instance with S = {{u1, u2}, {u2, u3}}.

s can either choose to be in the hitting set by combining some bSis with the appropriate bSiβ to

activate some of the weight[Si, {s, β}], or choose not to be in the hitting set by combining all bSis for

Si ∈ hit(s) to activate weight[hit(s), {s}]. We will be able to activate |hit(H)|+ |U \H| = m+(n−t)

weight widgets if there is a hitting set of size t and strictly fewer if no such set exists. By our choice

of K, any reduction in the number of vertices not caused by activating weight widgets will be

insignificant.

First, suppose there is a hitting set H for S of size t. We will give a sequence of (m+n− t)K

consecutive amalgamations, which together constitute a 1-block reducing the number of vertices

by (m + n − t)K. For each Si ∈ S, pick some s ∈ H such that Si ∈ hit(s). After amalgamating

bSis with bSiβ, the weight widget w = weight[Si, {s, β}] can be activated and Bw amalgamated

sequentially. Doing this for each Si gives a total of m(K + 1) ≥ mK consecutive amalgamations.

As the above amalgamations only affected the vertices in B associated with H, next consider

any s ∈ U \ H. We can amalgamate the vertices {bSis : Si ∈ hit(s)} in any order to form

bhit(s)s : [hit(s), {s}] which can then activate weight[hit(s), {s}]. Amalgamating all the vertices in

this weight widgets give a total of at least K amalgamations for each vertex s ∈ U \H. Thus we

66

can perform mK + (n − t)K = (m + n − t)K consecutive amalgamations, so there is a 1-block

conjugacy Φ∞ : XG → XG′ such that |VG| ≥ |VG′ | − (m+ n− t)K.

Next suppose there is no hitting set H of size t. Let Φ : XG → XG′ be a 1-block conjugacy

such that N = |VG| − |VG′ | is as large as possible. Define

H = {s ∈ U : weight[hit(s), {s}] is activated},

F = {Si : weight[Si, {s, β}] is activated for some s ∈ Si},

H = U \H.

Note that there is a single path in G from Si to s, through the vertex bSis, which is required to

activate both weight[hit(s), {s}] and weight[Si, {s, β}]. Thus for every bSis we have that if Si ∈ F ,

then s ∈ H. That is,

F ⊆ {Si : s ∈ H for some bSis}. (3.2)

We now count how much smaller |VG′ | could be than |VG|. By construction, each activated widget

can lead to reducing the number of vertices by at most K. Let Bnon-weight = {bSis : Si ∈ S, s ∈

Si} ∪ {bSiβ : Si ∈ S} be the vertices in B not in weight widgets. By Lemma 3.4.6, if u ∈ Φ−1(v)

with |Φ−1(v)| > 1 for some u not in an activated widget, then u ∈ Bnon-weight ∪
⋃
w∈W w1. Thus

VG can be reduced by at most (|F |+ |H|)K + |Bnon-weight|+ |W |. Since

|Bnon-weight|+ |W | = (mn+m) + (mn+ n) < K, (3.3)

we have

|VG| − |VG′ | ≤ (|F |+ |H|)K + |Bnon-weight|+ |W |

< (|F |+ |H|)K +K (by (3.3))

≤ (|hit(H)|+ (n− |H|) + 1)K (by (3.2) and H = U \H)

≤ (m+ n− t)K (by Lemma 3.4.8).

67

3.5 Edge shifts

Thus far we have restricted our attention to vertex shifts, rather than edge shifts, though

the latter are perhaps more commonly used in the literature. For various reasons, the problems we

consider are in general more appropriate for vertex shifts, as we discuss in §3.7. (Vertex shifts are

also motivated by applications (§3.7).) Nonetheless, we now give some results for edge shifts, for

the first two problems: verifying k-block conjugacies, and testing pairs of shifts for conjugacy. The

third problem remains open for edge shifts.

In the following, we will leverage our results for vertex shifts, using the standard conver-

sion from edge shifts to vertex shifts: edges become vertices, and pairs of adjacent edges become

edges [51, Proposition 2.3.9]. More formally, we recall that given edge shift Xe
G, its vertex shift

representation is the shift XG′ where VG′ = EG and EG′ = {(ei, ej) : eiej is a word in Xe
G}. Thus,

for any edge shifts Xe
G, X

e
H , there exists a k-block conjugacy Φ∞ : Xe

G → Xe
H if and only if there

exists a k-block conjugacy Φ′∞ : XG′ → XH′ between the vertex shift representations of XG and

XH .

First, we observe that our verification algorithm for vertex shifts immediately applies to edge

shifts.

Theorem 3.5.1 (Theorem A). Given directed multigraphs G,H and a proposed k-block code Φ∞ :

Xe
G → Xe

H , deciding if Φ∞ is a conjugacy can be determined in O(|EG|4k).

Proof. Given edge shifts Xe
G, X

e
H , we first construct their vertex shift representations XG′ , XH′ as

above. Letting Φ′∞ be the corresponding block code between the vertex shifts, by Corollary 3.2.2.4,

we can determine if Φ′∞ is a conjugacy in O(|VG′ |4k) = O(|EG|4k) time.

We now turn to the k-block conjugacy problem for edge shifts, where we again show GI-

hardness.

Definition 3.5.2. Given directed mult-graphs G,H, the k-Block Conjugacy Problem, denoted

k-BCe, is to decide is there is a k-block conjugacy Φ∞ : Xe
G → Xe

H between the edge shifts Xe
G, X

e
H .

68

(a) v v′ v • · · · • • • v′
e ein e1 ek−2 ek−1

etk

ebk

eout

(b) u u′ u •

•

•

· · ·

· · ·

•

•

• u′
f fin

f t1

f t2 f tk−1

f tk

f b1
f b2 f bk−1 f bk

fout

Figure 3.8: (a) The edge gadget for each pre-image graph. (b) The edge gadget for each image
graph.

Theorem 3.5.3 (Theorem B). k-BCe is GI-hard.

Proof. We first show that 1-BCe is GI-hard. Given directed graphs G,H with |EG| = |EH |, as in

the vertex shift case, we will argue that there exists a 1-block conjugacy between the edge shifts

if and only if the graphs are isomorphic. Suppose first that G,H are isomorphic. Let G′, H ′ be

the directed graphs for vertex shifts, as described above, so that XG′ = Xe
G and XH′ = Xe

H . Since

G,H are isomorphic and G′, H ′ are created by an isomorphism-invariant deterministic procedure,

G′, H ′ are isomorphic. By Theorem 3.3.2, there exists a 1-block conjugacy Φ∞ : XG′ → XH′ , so

XG′ = Xe
G is conjugate to XH′ = Xe

H via a 1-block code.

Now suppose Φ∞ : Xe
G → Xe

H is a 1-block conjugacy. Noting that Φ : EG → EH is

a map on edges, we show that Φ can be realized as a map on VG. To do this, it suffices to

show (i) for any two edges (v1, v2), (v1, v3) starting at the same vertex, Φ((v1, v2)),Φ((v1, v3))

also start at the same vertex and (ii) for any two edges (u1, u2), (u3, u2) ending at the same

vertex, Φ((u1, u2)),Φ((u3, u2)) also end at the same vertex. To see condition (i), consider any

(v4, v1) ∈ EG. As Φ((v4, v1)(v1, v2)),Φ((v4, v1)(v1, v3)) must both be words in Xe
H , we must have

that Φ((v1, v2)),Φ((v1, v3)) both start at the same vertex. Similarly, for condition (ii), consider

any (u2, u4) ∈ EG, and note that Φ((u1, u2)(u2, u4)),Φ((u3, u2)(u2, u4)) are both words in Xe
H , so

Φ(u1, u2),Φ(u3, u2) must end at the same vertex. Thus Φ can be realized as a map Ψ : VG → VH

on vertices which is surjective and preserves the edge/non-edge relation. To show Ψ is actually a

69

graph isomorphism, consider the inverse Φ−1
∞ . Since Φ∞ is 1-block conjugacy and |EG| = |EH |, Φ−1

∞

is a 1-block code. Again, Φ−1
∞ can be realized as a surjective vertex map Ψ′ which preserves the

edge/non-edge relation. Since both Ψ : VG → VH and Ψ′ : VH → VG are surjective maps between

finite sets, we actually have Ψ,Ψ′ are bijections. Thus Ψ is a graph isomorphism from G to H.

We now reduce 1-BCe to k-BCe, as we did with vertex shifts. Given edge shifts Xe
G, X

e
H ,

construct Ĝ, Ĥ as follows. To form Ĝ, substitute each edge in G with a path of length k followed

by two parallel edges and a final edge (Figure 3.8a). Construct Ĥ by substituting each edge in H

with a single edge followed by two parallel paths of length k followed by a single edge (Figure 3.8b).

Then construct the vertex shift representations G′, H ′, Ĝ′, Ĥ ′ of G,H, Ĝ, Ĥ. By construction of

the edge gadget, Ĝ′, Ĥ ′ can be formed from G′, H ′ by using the vertex gadget in Figure 3.2. Thus

by Theorem 3.3.5, there exists a 1-block conjugacy Φ′∞ : XG′ → XH′ if and only if there exists

a k-block conjugacy Φ̂′∞ : XĜ′ → XĤ′ . Since there exists a k-block conjugacy Φ∞ : Xe
G → Xe

H

between edge shifts if and only if there exists a k-block conjugacy Φ′∞ : XG′ → XH′ between the

vertex representations, there exists a 1-block conjugacy Φ∞ : XG → XH if and only if there exists

a k-block conjugacy Φ̂ : XĜ → XĤ . Thus k-BCe is 1-BCe-hard and, in particular, GI-hard.

3.6 Recognizing shifts of finite type

We now look at a larger class of shifts than shifts of finite type. In particular, we look at

sofic shifts, which are the smallest class of shifts containing shifts of finite type which are closed

under factors maps (i.e., quotients). We then investigate the problem: Given a sofic shift X, is X

a shift of finite type?

Let G = (V,E) be a directed graph. A labeled graph is a pair G = (G,L) where L is

a labeling function L : V → A into some alphabet A. Similarly an edge-labeled multigraph

is a pair Ge = (G,L) where G is a multigraph and L : E → A is a labeling function from the

edges of G into the alphabet A. A labeled graph (or multigraph) G = (G,L) is irreducible if

G is irreducible. Then, as with vertex and edge shifts, consider any point (i.e., bi-infinite walk)

p = · · · p−1.p0p1 · · · in XG (or Xe
G). Considering that L defines a 1-block code L∞ : XG → AZ,

70

the points {L∞(x) : x ∈ XG} form a shift space [51, Theorem 3.1.4]. When G is a labeled graph,

we denote this shift XG , and when G is an edge-labeled multigraph, we denote the shift Xe
G . As

another perspective, XG (and similarly for Xe
G) is the collection of all bi-infinite walks on G where

the steps are labeled by the labeling L rather than the vertex (or edge) as was the case in vertex

shifts (or edges shifts). Any shift X such that X = XG for some labeled graph G is called a sofic

shift. Any particular labeled graph G such that X = XG is called a presentation of the sofic

shift X. Note that, unlike vertex and edge shifts, there are many presentations of the same sofic

shift. (Note that every SFT presented by a vertex shift has |A| vertices and every SFT presented

by an edge shift has |A| edges. See Theorem 3.3.2 to see that all vertex shifts presenting the same

SFT are isomorphic and Theorem 3.5.3 to see that all edge shifts presenting the same SFT are

isomorphic.) See Figure 3.9 for an example of different presentations of the same sofic shift.

(a) • • •
0

0

1

1

0

(b) • •
0

0

1

(c) • • •
0

0

0

0

1

Figure 3.9: (a) A reducible presentation of the even shift which is right-resolving. (b) An irreducible
presentation of the even shift which is right-resolving. (c) An irreducible presentation of the even
shift which is not right-resolving.

Example 3.6.1. In particular, consider the subshift XF of {0, 1}Z where the list of forbidden

words is F = {10k1 : k is odd}. This shift contains the points of {0, 1}Z where the length of every

sequence of consecutive zeroes is either even or infinite. The shift XF is called the even shift.

There is no finite list of forbidden words describing the even shift, so the even shift is a sofic shift

71

which is not a shift of finite type. Figure 3.9 gives three presentations of the even shift.

Considering irreducible shifts as defined in Definition 2.3.1, we have in graph theoretic terms

for sofic shifts that X is irreducible if there exists an irreducible presentation G for X [51, Propo-

sition 3.3.11]. For an example, note that (b) and (c) in Figure 3.9 are irreducible graphs, so the

even shift is an irreducible sofic shift, even though Figure 3.9(a) is not irreducible. To describe the

situation of Figure 3.9, we say (b), (c) are irreducible presentations of an irreducible shift, while (a)

is a reducible presentation of an irreducible shift. Given a labeled graph G, G is right-resolving

(i.e., has a deterministic labeling in the forward direction) if for each v ∈ V , the out-neighbors

N+(v) all have distinct labels. Or for edge-labeled multigraphs, G is right-resolving if for each

v ∈ G, each edge leaving v has a distinct label. For an example, the presentations (a) and (b) in

Figure 3.9 are right-resolving while the presentation (c) is not right-resolving. By [51, Theorem

3.3.2], every sofic shift has a right-resolving presentation which can be obtained via the subset con-

struction; however, given a non-right-resolving presentation G of a sofic shift, the right-resolving

presentation G′ generated by the subset construction need not be polynomial in size compared to

G. In particular, VG′ ⊆ P(VG) \ {∅}, so the only bound on |VG′ | is |VG′ | ≤ 2|VG | − 1. Regardless,

we restrict to right-resolving presentations and leave non-right-resolving presentations as an open

question.

To recognize which sofic shifts are of finite type, we use a known classification. Unfortunately,

this known classification relies on theory which has only been developed for sofic edge shifts. We

conjecture the same classification and results hold for sofic vertex shifts, but we do not consider

sofic vertex shifts further.

First we note that every irreducible sofic shift has a unique representation as its minimal

right-resolving presentation [51, Theorem 3.3.18]. Even more, given any irreducible right-resolving

presentation of a sofic shift, we can construct the minimal right-resolving presentation in O(|V |2)

time [51, Theorem 3.4.14].

Consider any word w ∈ B(Xe
G) such that every presentation of w in G terminates at the same

72

vertex. Such a word is a synchronizing word for Xe
G . The following result is well-known.

Theorem 3.6.2 ([51, Theorem 3.4.17]). Suppose G is the minimal right-resolving presentation of

an irreducible sofic shifts. Then there exists N such that all words in BN (Xe
G) are synchronizing

for G if and only if Xe
G is a shift of finite type.

We now connect this result to cycles, so we can use the machinery developed in §3.2.

Proposition 3.6.3. Let G = (G,L) be an edge-labeled multigraph which is the minimal right-

resolving presentation of the the irreducible sofic shift Xe
G. Then G contains two cycles which

present the same word if and only if Xe
G is not a shift of finite type.

Proof. (⇒) Suppose G contains two cycles c, d which present the same word. Then there is an index

i such that (ci, ci+1), (di, di+1) are distinct edges. Then for every length m, the final m characters

of L(c∞c[1,i+1]),L(d∞d[1,i+1]) form a word which is nonsynchronizing. Thus Xe
G is not of finite type

by Theorem 3.6.2.

(⇐) Suppose Xe
G is not of finite type. Then by Theorem 3.6.2, there is a nonsynchronizing

word of every length. Let w = w1w2 · · ·wn be a nonsynchronizing word of length n =
(|E|

2

)
+ 1.

There are walks a = a1a2 · · · an+1 and b = b1b2 · · · bn+1 such that a and b both present w but

(an, an+1) 6= (bn, bn+1). Since (an, an+1) 6= (bn, bn+1) and G is right-resolving, (ai, ai+1) 6= (bi, bi+1)

for 1 ≤ i ≤ n.

Consider all possible pairs (e, e′) of edges from G with e 6= e′. There are
(|E|

2

)
such pairs, so

by the pigeonhole principle, there exist indices j, k with j < k such that (aj , aj+1) = (ak, ak+1) and

(bj , bj+1) = (bk, bk+1). Thus aj · · · ak and bj · · · bk are distinct cycles in G which present the same

word.

Theorem 3.6.4 (Theorem D). Let G = (G,L) be an edge-labeled multigraph which is an irreducible

right-resolving presentation of the sofic shift XG. There is a O(|V |4)-time algorithm to decide

whether XG is of finite type.

73
Block size Verification (G,H,Φ) Conjugacy (G,H) Reduction (G, `)

Vertex
k = 1 1-BV: P 1-BC: GI-hard, NP 1-BR: NP-complete
k > 1 k-BV: P k-BC: GI-hard, NP k-BR: NP-complete??

Edge
k = 1 1-BVe: P 1-BCe: GI-hard, NP* 1-BRe: NP-complete??
k > 1 k-BVe: P k-BCe: GI-hard, NP* k-BRe: NP-complete??

Table 3.1: Summary of results and open questions, for vertex and edge shifts. Question marks
denote conjectures, and BV refers to the verification problem (§3.2). The asterisk (*) denotes
a subtlety in edge shift representations: the k-block conjugacy problem is in NP when the the
representation size is considered to be the number of edges (i.e., a unary representation), but
membership in NP is not clear when the shift is given as an adjacency matrix (i.e., a binary
representation).

Proof. By [51, Theorem 3.4.14], we can construct the minimal right-resolving presentation of Xe
G

in O(|V |2) time, so without loss of generality, we can assume the given presentation is the minimal

right-resolving presentation.

Let A = {1, 2, . . . ,m} = L(E) be the alphabet of Xe
G . Consider the 1-block code L∞ : Xe

G →

AZ from the edge shift on the underlying multigraph. By Proposition 3.6.3, Lc is injective if and

only if Xe
G is a shift of finite type. By Theorem 3.5.1, the injectivity of Lc can be determined in

O(|E|4) time.

3.7 Discussion and future work

We have addressed several variants of the conjugacy problem restricted to k-block codes,

with new algorithms to verify a proposed conjugacy, and hardness results for k-block conjugacy

and representation reduction via 1-block codes (Table 3.1). Below we discuss subtleties of input

representation, followed by applications and open problems.

Representations of SFTs. When considering how to describe a subshift of finite type

(SFT), three representations come to mind: a vertex shift, an edge shift, and a list of forbidden

words F . As our results pertain to vertex and edge shifts, we now discuss some nuances in these

two representations, leaving lists of forbidden words to future work.

Perhaps the central advantage of edge shifts over vertex shifts is their compact representation

74

size: a shift on n symbols can be represented in size as small as O(log n) by writing the multi-graph

as a integer adjacency matrix, as opposed to Ω(n) for vertex shifts. This compact representation

size can have important implications on the computational complexity. In the verification problem,

for example, writing down a k-block code Φ näıvely takes Ω(n) = Ω(|EG|) space, which can be

exponential in the size of the graphs G,H. (One can improve this by encoding Φ as a integer

|VG| × |VG| × |EH | tensor, specifying how many (u, v) ∈ EG edges map to a given e ∈ EH , but this

can still be exponential.) Thus, while our algorithm remains polynomial-time, it would not be for

cases allowing a compact representation of Φ.

Similarly, for the conjugacy problem, we only know k-BCe to be in NP if we consider the

graphs G,H to be represented in adjacency list form, which takes Ω(|EG|) space, rather than the

typically more compact integer adjacency matrix form taking O(|VG| log |EG|) space, as the natural

certificate is the block map Φ witnessing the conjugacy. For the matrix representation of edge shifts,

membership in NP would require a certificate exponentially smaller than the näıve representation

of the block map Φ.

Finally, what “size reduction” means for edge shifts depends on the choice of adjacency list or

matrix above. For the adjacency list, we have that the problem of reducing the number of vertices

in the graph is in NP, but it is less motivated, as the size is dominated by |EG|, not |VG|. On the

other hand, while the adjacency matrix representation size is dominated by |VG|, it is not clear

whether the problem of reducing the number of vertices is in NP, for the same reason as above.

Motivation from Markov partitions. As noted in [22], variants of the conjugacy prob-

lem for vertex shifts have applications in simplifying Markov partitions, a tool to study discrete-time

dynamical systems via symbolic dynamics. Briefly, a Markov partition is a collection C of regions

of the phase space, satisfying certain properties, which induces a conjugacy to a vertex shift XG

where G = (C,E), i.e., the vertices are labeled with the regions of the phase space. In applications,

one can encounter Markov partitions with thousands of regions, thus motivating the problem of

simplifying the partition. Without additional information about the dynamical system, essentially

the only way to do this while preserving the relevant geometric information is to coarsen the par-

75

tition, by replacing sets of regions with a single region which is their union. This operation is

exactly a 1-block code. Our results therefore give an efficient algorithm to test whether a proposed

coarsening (1-block code) is valid (yields a conjugacy). Our results also imply that the problem of

minimizing the partition size is NP-complete. (Previous work [22] only showed the latter for the

case where the 1-block code was a sequence of amalgamations.)

Open problems. Our work leaves several open problems, such as those implied by Ta-

ble 3.1: resolving the complexity of the k-block conjugacy problem, and showing NP-hardness of

the size reduction problem. The complexity of deciding k-block conjugacy between edge shifts

represented as integer matrices is especially interesting, as membership in NP is perhaps unlikely

(see above). Regarding the k-block conjugacy problem and resolving where it lies on the spectrum

between GI-complete and NP-complete, we conjecture that, similar to the induced subgraph iso-

morphism problem [70], 1-BC is an NP-complete problem which happens to be GI-complete when

|VG| = |VH |. Considering k-BCe, it is plausible that k-BCe is NEXP-complete as edge shifts seem to

be a succinct representation of SFTs; this would be similar to results for succinct versions of other

NP-complete problems [23, 59]. Beyond these questions, it would be interesting to address the

complexity of k-block conjugacy between SFTs given as lists of forbidden words, and the natural

variants of the problem for that input (for example, reducing the representation size of the list).

And finally, as mentioned in §3.6, the problem of finding an efficient algorithm to recognize when a

general presentation of a sofic shift (not necessarily an irreducible right-resolving edge presentation)

is also an SFT is left open.

76

3.8 Algorithms

Function IsInjective(G,H,Φ):

Input: irreducible graphs G,H and a 1-block code Φ

Output: true, if Φc :
⋃
nCn(G)→

⋃
nCn(H) is injective; false, otherwise

/* Construct the meta-graph M */

VM ← VG × VG;

EM ← {((v1, v2), (u1, u2)) : Φ(v1) = Φ(v2),Φ(u1) = Φ(u2), and (v1, u1), (v2, u2) ∈ EG};

/* Decide if M has a cycle passing through (v1, v2) with v1 6= v2 */

S ← GetStronglyConnectedComponents(M) ; /* Tarjan’s */

foreach subgraph s in S do

if s is a singleton then

continue;

end

foreach vertex (v1, v2) in s do

if v1 6= v2 then

return true;

end

end

end

return false;

Algorithm 3.1: Determine if Φc is injective

77

Function IsConjugacyIrreducible(G,H,Φ):

Input: irreducible graphs G,H and a 1-block code Φ

Output: true, if Φ∞ is a conjugacy; false, otherwise

if not IsInjective(G,H,Φ) then

return false;

end

for i ∈ {1, . . . , |VG|} do

if tr(A(G)i) 6= tr(A(H)i) then

return false;

end

end

return true;

Algorithm 3.2: Determine if Φ∞ between irreducible graphs is a conjugacy

78

Function AddSinkComponents(G,H,Φ):

Input: reducible graphs G,H and a 1-block code Φ

Result: (1) alters G,H so each sink component T in H has the property |VΦ−1(T)| = 1,

and (2) extends Φ to the new graphs so Φ∞ : XG → XH is a conjugacy if and

only if the original 1-block code was a conjugacy

T ← GetSinkComponents(H);

foreach subgraph T in T do

T ′ ← Φ−1(T);

if |VT ′ | = 1 then continue;

/* Find the subgraphs C and C ′ */

v ← GetRandomVertex(T);

c← GetShortestCycleStartingAt(v);

VC ← {u ∈ VT : u ∈ c};

EC ← {(u, u′) : uu′ is a word of length 2 contained in c∞};

VC′ ← {u ∈ VT ′ : Φ(u) ∈ VC};

EC′ ← {(u, u′) ∈ ET ′ : (Φ(u),Φ(u′)) ∈ EC};

/* Attach the new vertices t and t′ */

VG.Add(t′);

N+(t′)← {t′}; N−(t′)← {t′};

foreach vertex u in VC′ do

if Φ(u) = v ∧ there is a path in C ′ from u to a cycle then N−(t′).Add(u);

end

VH .Add(t);

N+(t)← {t}; N−(t)← {t, v};

Φ(t′)← t;

end

Algorithm 3.3: Turn every sink component into a single vertex

79

Function AddSourceComponents(G,H,Φ):

Input: reducible graphs G,H and a 1-block code Φ

Result: (1) alters G,H so each source component S in H has the property

|VΦ−1(S)| = 1, and (2) extends Φ to the new graphs so Φ∞ : XG → XH is a

conjugacy if and only if the original 1-block code was a conjugacy

G.ReverseEdges();

H.ReverseEdges();

AddSinkComponents(G,H,Φ);

G.ReverseEdges();

H.ReverseEdges();

Algorithm 3.4: Turn every source component into a single vertex

Function IsConjugacyReducible(G,H,Φ):

Input: reducible graphs G,H and a 1-block code Φ

Output: true, if Φ∞ is a conjugacy; false, otherwise

AddSinkComponents(G,H,Φ);

AddSourceComponents(G,H,Φ);

VG.Add(vG);

N−(vG)← GetSinkVertices(G);

N+(vG)← GetSourceVertices(G);

VH .Add(vH);

N−(vH)← GetSinkVertices(H);

N+(vH)← GetSourceVertices(H);

Φ(vG)← vH ;

return IsConjugacyIrreducible(G,H,Φ);

Algorithm 3.5: Determine if Φ∞ between reducible graphs is a conjugacy

Chapter 4

Determining isomorphism of quotients of genus 2 groups

We thank Gábor Ivanyos for helpful conversations and references during the work on this

chapter.

4.1 Overview

In one view, [49] determines isomorphism of quotients of genus 1 groups via three basic steps.

(1) Classify all possible normal subgroups as either central or containing the commutator sub-

group.

(2) Given G which is a quotient of some genus 1 group, recover the smallest genus 1 group,

H, such that G is a quotient of H. Then write G ∼= H/N as a particular genus 1 group

quotiented by a particular normal subgroup N .

(3) Given such quotients G1
∼= H/N1 and G2

∼= H/N2, decide if G1
∼= G2 by determining if

there exists ϕ ∈ Aut(H) such that ϕ(N1) = N2.

While we use this idea as motivation, the first two steps fail to generalize to the genus 2 case, so

we must find alternative solutions.

4.2 Genus 2 groups

Next we introduce some useful tools for determining isomorphism inside special classes of

p-groups of exponent p and class 2, which will allow us to give the technical details behind the

81

definition of a genus 2 group. Then we apply a known classification of indecomposible genus 2

groups.

4.2.1 Baer’s correspondence

Given a commutative ring C and left C-modules U, V,W , the map b : U × V � W is

C-bilinear if for every u, u′ ∈ U, v, v′ ∈ V, c ∈ C,

b(cu+ u′, v) = cb(u, v) + b(u′, v),

b(u, cv + v′) = cb(u, v) + b(u, v′).

To every group, we associate a bilinear map which encodes commutation.

Definition 4.2.1.1. Given any group G, the alternating Z-bilinear map Bi(G) associated to G is

defined by

Bi(G) : G/Z(G)×G/Z(G)� G′

(gZ(G), hZ(G)) 7→ [g, h].

In the case of p-groups of exponent p, Bi(G) is an alternating Fq-bilinear map for some field

extension Fq of Fp; that is, Bi(G) is a tensor over Fq for all the groups we will study in this thesis.

Establishing conventions, when referring to Bi(G) in a coordinate-free way, we will use the notation

Bi(G). We will often need to choose a basis, which in our context will always be over a finite

field Fq, at which points we will use the notation BiFq(G). After choosing a basis, we can refer

to individual entries by using the notation BiFq(G)ijk to represent the element of Fq stored in the

(i, j, k)-entry. Picking an orientation for BiFq(G), we will write BiFq(G)∗∗k to be the kth slice in the

G′ direction. That is, after picking a bases {b1, . . . , bm} for G/Z(G) and {c1 . . . , c`} for G′, consider

any u, v ∈ G/Z(G). Then u(BiFq(G)∗∗k)v
T gives the coefficient of ck in [u, v]. While BiFq(G)i∗∗

and BiFq(G)∗j∗ are also slices of BiFq(G) in other directions, they will not be used, so the word

slice will be used only to mean BiFq(G)∗∗k. Going back to individual entries, BiFq(G)ijk is then

the (i, j)-entry of the kth slice of BiFq(G).

82

While Bi(G) doesn’t determine G in general, we will soon see that Bi(G) fully determines G

when G has exponent p and Z(G) = G′. In the special case that G is a p-group of exponent p, we

note that every abelian group of exponent p is isomorphic to the additive group Fp × · · · × Fp, so

we have Bi(G) is a bilinear map vector spaces over Fp; that is, Bi(G) can be viewed as

Bi(G) : Fkp × Fkp � F`p

when G is a p-group of exponent p. Given an homomorphism ϕ : G→ H, it should be possible to

push ϕ to a “homomorphism” from Bi(G) to Bi(H), and indeed it is. More formally, two bilinear

maps b1, b2 : U×U �W are pseudo-isometric if there exist isomorphisms f : U → U, f̃ : W →W

such that b1(f(u), f(v)) = f̃(b2(u, v)); that is, b1, b2 are pseudo-isometric if f, f̃ are isomorphisms

such that the following diagram commutes.

U × U W

U × U W

b1

b2

f f f̃

Furthermore, for any Fq-bilinear map b : U × U � W , we have the group of pseudo-isometries

ΨIsom(b) defined by

ΨIsom(b) = {(f, f̃) ∈ GLFq(U)×GLFq(W) : for each u, v ∈ U, b(f(u), f(v)) = f̃(b(u, v))}.

Leading to a main component of our strategies in this chapter, we would like to compare isomor-

phism of groups with pseudo-isometry of bilinear maps. First consider any isomorphism ϕ : G→ H.

Setting f(gZ(G)) = ϕ(g)Z(G) and f̃(g) = ϕ(g) gives a pseudo-isometry from Bi(G) to Bi(H). In

picture, we have the following commutative diagram.

Bi(H) : H/Z(H)×H/Z(H) H ′

Bi(G) : G/Z(G)×G/Z(G) G′

gZ(G)7→ϕ(g)Z(H) ϕ|G′

In general pseudo-isometry of Bi(G),Bi(H) does not imply isomorphism of G,H (in particular,

Bi(D8) and Bi(Q8) are pseudo-isometric), so we now work toward a weakened version of the con-

83

verse. Reminding ourselves that p is assumed to be an odd prime, consider any alternating Fp-

bilinear map b : U × U � W . We define the Baer group Gp(b) to be the set U ×W equipped

with multiplication defined by (u,w) · (u′, w′) = (u+ u′, w + w′ + 1
2b(u, u

′)).1 Suppose (f, f̃) is a

pseudo-isometry from b1 to b2. Then

ϕ : Gp(b1)→ Gp(b2)

(u,w) 7→ (f(u), f̃(v))

is an isomorphism, so b1, b2 being pseudo-isometric implies Gp(b1),Gp(b2) are isomorphic. To

strengthen this result, we claim that Gp(Bi(G)) ∼= G whenever G is a p-group of exponent p and

with Z(G) = G′. To give a feel for this isomorphism, as well as evidence toward this claim, we show

G and Gp(Bi(G)) are both class 2 groups of the same size whose commutation maps match. First

the fact that |G| = |Gp(Bi(G))| is clear from the assumption that Z(G) = G′. Next, noting that

Bi(G) being alternating implies Bi(G)(u, u) = 0 for all u ∈ U , observe that (u,w)−1 = (−u,−w) as

(u,w) · (−u,−w) =
(
u− u,w − w + 1

2Bi(G)(u,−u)
)

=
(
0, −1

2 Bi(G)(u, u)
)

= (0, 0).

Calculating a generic commutator, we see

[(u,w), (u′, w′)] = ((−u,−w) · (−u′,−w′)) · ((u,w) · (u′, w′))

=
(
−u− u′,−w − w′ + 1

2Bi(G)(u, u′)
)
·
(
u+ u′, w + w′ + 1

2Bi(G)(u, u′)
)

=
(
0,Bi(G)(u, u′) + 1

2Bi(G)(−(u+ u′), u+ u′)
)

= (0,Bi(G)(u, u′)− Bi(G)(u+ u′, u+ u′))

= (0,Bi(G)(u, u′)).

Thus, Gp(Bi(G))′ ≤ 0 ×W ≤ Z(Gp(Bi(G))); that is, Gp(Bi(G)) is nilpotent of class at most 2.

Finally, consider any g, h ∈ G. Then g = g · z1, h = h · z2 for g, h ∈ G/Z(G) and z1, z2 ∈ Z(G), so

[g, h] = b(g, h). By the calculation above, [(g, z1), (h, z2)] = (0, b(g, h)), so G and Gp(Bi(G)) have

matching commutation maps. While we have not given the full proof here, the preceding discussion

1 Note that division by 2 is defined in every field of odd order.

84

gives the main idea for the following result of Baer, which is fundamental to the remainder of the

chapter.

Theorem 4.2.1.2 ([12]). Two p-groups G1, G2 of exponent p with Z(Gi) = G′i are isomorphic if

and only if Bi(G1) and Bi(G2) are pseudo-isometric.

Related, but not necessary for our arguments, is that b and Bi(Gp(b)) are pseudo-isometric

under the following niceness assumption on b. Define an alternating bilinear map b : V × V � W

to be nondegenerate if u 6= 0 implies there is some v ∈ V such that b(u, v) 6= 0. Note that

this is precisely the analogue of assuming Z(G) = G′; if b is nondegenerate, then G = Gp(b)

satisfies Z(G) = G′, and conversely, if G satisfies this condition, then Bi(G) is nondegenerate. We

mention for completeness that if b : V × V � W is a nondegenerate alternating bilinear map and

b(V, V) = W , then b and Bi(Gp(b)) are pseudo-isometric.

4.2.2 Genus of a group

As mentioned in §2.5, we are concerned with p-groups of exponent p for some odd prime p such

that Z(G) = G′, and the primary way we will approach GpI is through pseudo-isometry of Bi(G).

Now, as in [20], and using ideas first introduced by Knebelman in [41] for Lie algebras, we associate

a notion of genus to every group of nilpotence class 2. Given a bilinear map b : U × V � W , the

centroid of b, written Cent(b), is the largest ring C over which b is C-bilinear. Namely, Cent(b) is

the ring

Cent(b) =

 (f, g, h) ∈ End(U)× End(V)× End(W) : for all u ∈ U, v ∈ V,

b(f(u), v) = h(b(u, v)) = b(u, g(v))

 .

Coming back to groups, it is clear from this explicit description of Cent(Bi(G)) that Cent(Bi(G))

always exists and can be found as the solution to a system of linear equations. As also mentioned

earlier, it suffices to consider directly indecomposible groups. By [77], if G is directly indecomposi-

ble, then Cent(Bi(G)) is a local ring. Letting J = Jac(Cent(Bi(G))) be the Jacobson radical of

the centroid of Bi(G), we have G′/G′J is a vector space over the field Cent(Bi(G))/J . We define

85

the rank of G′ to be the dimension of G′/G′J over Cent(Bi(G))/J . For any group G, the group

Gp(Bi(G)) decomposes as G1 × · · · ×Gm where each Gi is directly indecomposible. The genus of

a class 2 group is defined to be the maximum rank of [Gi, Gi] as a Cent(Bi(Gi))-module.

4.2.3 Classification of indecomposible genus 2 groups

In an attempt to simplify the problem of testing isomorphism, we wish to subdivide our

groups as much as possible. A more general way to split up a group than as a direct product is as

a central product.

Definition 4.2.3.1. A central decomposition of a group G is a collection of subgroups H such

that:

(1) 〈H〉 = G,

(2) For each H ∈ H, 〈H \ {H}〉 6= G,

(3) For each H ∈ H, [H, 〈H \ {H}〉] = 1.

If {G} is the only central decomposition of G, then G is called centrally indecomposible.

Note that G being centrally indecomposible implies G is directly indecomposible. Also, we

can decompose a group as a central product efficiently [76, 75]. While an isomorphism test which

works on directly indecomposible groups immediately gives an isomorphism test for groups which

are direct products, the same is not true for central products. Regardless, the case of centrally

indecomposible groups is difficult enough; we proceed with the assumption that our groups are

centrally indecomposible and the hope that the strategies developed in [20] for central products of

genus 2 groups generalize to the case of quotients of central products of genus 2 groups.

Going back to our context of p-groups G of exponent p with Z(G) = G′, Cent(Bi(G)) ∼= Fpn

for some n and the genus of G is the dimension of G′ over Fpn . We will be concerned with quotients

of genus 2 groups, so we start with the following classification of indecomposible genus 2 groups.

86

Theorem 4.2.3.2 ([20, Theorem 1.2]). A centrally indecomposible p-group of exponent p and genus

2 over a field Fpn is isomorphic to one of the following types of groups:

(1) (a genus 2 sloped group) a quotient H(R)/N of a Heisenberg group,

H(R) =

1 e z

0 1 f

0 0 1

 : e, f, z ∈ R = Fpn [x]/(a(x)c), a(x) irreducible

,

by a central subgroup N , where N is a Fpn-subspace of codimension 2 in H ′;2 or

(2) (a genus 2 flat group) the matrix group

H[
m(Fpn) =

I2

e1 · · · em 0

0 e1 · · · em

z1

z2

Im+1

f0

...

fm

1

: ei, fi, zi ∈ Fpn

When the field and m are either understood or unimportant, we will abbreviate H[

m(Fpn) as

H[.

As determining isomorphism between genus 2 groups is solvable in polynomial time [20], we

attempt to generalize the results of [49], which shows isomorphism between quotients of genus 1

groups can be determined in polynomial time, to the case of quotients of genus 2 groups.

4.3 Quotients of genus 2 groups by non-central subgroups

As our desire is to determine isomorphism in quotients of genus 2 groups, we now consider

the possible normal subgroups of genus 2 groups. In the genus 1 case, we have the following nice

2 As written, the idea is correct, but it doesn’t actually make sense since H ′ ∼= Z/pZ × · · · × Z/pZ is not a
Fpn -vector space. More correctly, we could say 1−N is a Fpn -subspace of codimension 2 in H ′ as matrices over Fpn .
Alternatively, noting that H ′ is elementary abelian (and hence, H ′ ∼= Fp×· · ·×Fp), endow a Fpn scalar multiplication
structure from H(R) written over Fpn . Then N is a Fpn -subspace of codimension 2 in H ′ in this induced Fpn -vector
space.

87

classification of normal subgroups.

Proposition 4.3.1 ([49, Lemma 3.2]). Suppose G is a directly indecomposible genus 1 group with

Z(G) = G′ and N E G is any normal subgroup. Then N ≤ Z(G) or G′ ≤ N .

Unfortunately, this result does not generalize to the genus 2 case, as witnessed in the following

counterexample.

Example 4.3.2. Consider the subgroup N of H[
m(Fq) defined by

N =

I2 0
z1

0

Im+1

f0

0

...

0

1

: z1, f0 ∈ Fq

.

Then N E H[
m(Fq) but N is neither central nor contains the center.

Supposing N E G is a normal subgroup of a genus 2 group G there are three possibilities:

(1) Z(G) ≤ N ,

(2) N ≤ Z(G),

(3) N � Z(G) and Z(G) � N .

In the case where Z(G) = G′ ≤ N , the quotient G/N is elementary abelian, so isomorphism is easy

to test [35, 39, 64, 72]. The case where N ≤ Z(G) will be addressed in §4.4, so we now address

the final case of non-abelian quotients by normal subgroups N where N is not central. Supposing

G1, G2 are two such groups, we will show determining if G1
∼= G2 can be decided in polynomial

time by showing Gi is also a quotient of a genus 1 group and then appealing to [49].

88

Suppose G ∼= H/N is a quotient of a genus 2 group where N � Z(H) and H ′ � N . We will

show N contains a full 1 dimensional Fq-subspace of H ′. Explicitly for the flat genus 2 groups,

consider the subgroups

Z1 =

I2 0
z1

0

0 Im+1 0

0 0 1

: z1 ∈ Fq

and Z2 =

I2 0
0

z2

0 Im+1 0

0 0 1

: z2 ∈ Fq

(4.1)

of H[
m(Fq). We will show that any normal subgroup N E H[

m(Fq) such that N � Z(H[
m(Fq))

contains either Z1 or Z2.

Lemma 4.3.3. Suppose N E H[
m(Fq) such that N � Z(H[

m(Fq)). Then N contains a 1 dimensional

Fq-subspace of H[
m(Fq)′; in particular, Z1 ≤ N or Z2 ≤ N , where Z1, Z2 are the subgroups defined

in (4.1).

Proof. Let A ∈ N \ Z(H[
m(Fq)). Writing A as a tuple, we have

A = ((e1, . . . , em), (f0, . . . , fm), z1, z2) = (e, f , z1, z2).

As N is normal, [A,B] ∈ N for each B ∈ H[
m(Fq). Writing out the multiplication, we get

[(e, f , z1, z2), (g, h, y1, y2)] = (0, 0, e · h[0,m−1] − g · f [0,m−1], e · h[1,m] − g · f [1,m]) ∈ N.

As A /∈ Z(H[
m(Fq)), one of ei, fj 6= 0.

Case 1: There exists i such that ei 6= 0. Letting z ∈ Fq be arbitrary and commutating by

B = (0, (0, . . . , 0, e−1
i z, 0, . . . , 0), 0, 0)) where e−1

i z is at index i, we have [A,B] = (0, 0, 0, z) so

Z2 ≤ N .

Case 2: There exists i such that fi 6= 0.

Subcase 2a: f0 = 0. Letting z ∈ Fq be arbitrary and commutating byB = ((−f−1
0 z, 0, . . . , 0), 0, 0, 0),

we have [A,B] = (0, 0, z, 0) so Z1 ≤ N .

89

Subcase 2b: fi = 0 for some i 6= 0. Letting z ∈ Fq be arbitrary and commutating by B =

((0, . . . , 0,−f−1
i z, 0, . . . , 0), 0, 0, 0) where −f−1

i z is at index i, we have [A,B] = (0, 0, 0, z) so Z2 ≤

N .

While the contained Fq-subspace cannot be written as explicitly for sloped genus 2 groups,

the same result still holds.

Lemma 4.3.4. Suppose G = H(R)/M is a sloped genus 2 group with R = Fq[x]/(a(x)c) and

N E G such that N � Z(G). Then N contains a 1 dimensional Fq-subspace of G′.

Proof. Suppose N E G = H(R)/M such that N � Z(G). Lifting to H(R), there exists N̂ E H(R)

such that M ≤ N̂ and N̂ � Z(H(R)). As there exist A ∈ N \Z(G) and B ∈ G such that [A,B] 6= 1,

there exist

A =

1 e z

0 1 f

0 0 1

 = (e, f, z) ∈ N̂ \ Z(H(R)) and B = (g, h, y) ∈ H(R)

such that [A,B] = (0, 0, eh − fg) /∈ M . Then for each α ∈ Fq, the matrix [A, (αg, αh, z)] =

(0, 0, α(eh − fg)) ∈ N̂ \M. Thus, N̂ contains a 1 dimensional Fq-subspace of H(R)′ which is not

contained in M ; that is, N contains a 1 dimensional Fq-subspace of G′.

Theorem 4.3.5 (Theorem E). If G is a quotient of a centrally indecomposible group of genus 2 by

a non-central subgroup, then G is a quotient of a genus 1 group. In particular, testing isomorphism

of such quotients can be done in polynomial time.

Proof. Suppose G = H/N is a quotient of a centrally indecomposible genus 2 group by a non-

central subgroup. By Lemmas 4.3.3 and 4.3.4, N contains a 1 dimensional Fq-subspace of H ′.

This subspace is a subgroup L ≤ N ≤ H. Then H/N ∼= (H/L)/(N/L). As H is centrally

indecomposible, dimFq(H
′) = 2, so dimFq((H/L)′) = 1 and H/L is a genus 1 group. Thus H/N is

a quotient of a genus 1 group.

Finally, the fact that testing isomorphism of such groups can be done in polynomial time

follows by [49].

90

4.4 Quotients of genus 2 flat groups by central subgroups

Given G which is a quotient of a genus 1 group, a genus 1 group H of which G is also a

quotient can be found canonically by looking at the adjoint of Bi(G).

Definition 4.4.1. Given a bilinear map b : U × V � W , the adjoint of b, written Adj(b), is the

largest ring A such that b factors through the tensor product ⊗A : U × V → U ⊗A V . Or more

explicitly, the adjoint of b is

Adj(b) = {(f, g) ∈ End(U)× End(V)op : b(f(u), v) = b(u, g(v))}.

Then G is a quotient of the genus 1 group H1(Z(Adj(Bi(G)))) [49], where Hm(Fq) is a

generalized Heisenberg group defined in Example 2.5.2.1.

This result also does not generalize to the case of genus 2 groups as shown by the following

example.

Example 4.4.2. Consider G = H[
1(Fp[x]/(x2 + ax − 1))/N , where a is any constant such that

x2 + ax− 1 is irreducible and

N =

I2 0
0

bx

0 I2 0

0 0 1

: b ∈ Fp

.

A straightforward calculation shows

Adj (Bi(G)) ∼=

α γ M

β

β

 : α, β, γ ∈ Fp2 ↪→M2×2(Fp),M ∈M2×2(Fp)

,

so Z (Adj (Bi(G))) ∼= Fp.

4.4.1 Recovering the genus 2 group

Similar to the genus 1 case, given a group G which is a quotient of H[
m(Fq) by a central

subgroup, we would like to have a way to recover H[
m(Fq) using only G. While the idea to use

91

Z (Adj (Bi(G))), as in the genus 1 case, does not work, we can still recover the flat genus 2 group

of which G is a quotient.

Consider any indecomposible flat genus 2 group H[
m(Fq). Then BiFq(H

[
m(Fq)) is a (2m +

1) × (2m + 1) × 2-tensor. Slicing BiFq(H
[
m(Fq)) such that there are two slices (BiFq(H

[
m(Fq))∗∗1

and BiFq(H
[
m(Fq))∗∗2 as explained in the conventions below Definition 4.2.1.1), by [20] there are

changes of bases in H[
m(Fq)/Z(H[

m(Fq)) and Z(H[
m(Fq)) such that, respectively, the two slices are

 0 Im|0

−(Im|0)T 0

 ,
 0 0|Im

−(0|Im)T 0

 , (4.2)

where the blocks Im|0 and 0|Im are m× (m+ 1)-blocks consisting of an identity matrix augmented

by a column vector of zeros. Writing this tensor over Fp instead of Fpn (as explained in §2.4), there

are 2n slices of size n(2m + 1) × n(2m + 1) where any non-zero linear combination of slices has

rank 2mn. We notate this rewritten tensor as BiFp(H
[
m(Fpn)). Explicitly, any linear combination

of matrices in {BiFp(H
[
m(Fpn))∗∗k}k∈{1,...,2n} is

M =

0

A B 0 · · · 0

0 A B · · · 0

...
. . .

. . .
. . .

...

0 · · · 0 A B

−AT 0 · · · 0

−BT −AT · · · 0

...
. . .

. . .
...

0 · · · −BT −AT

0 · · · 0 −BT

0

(4.3)

where A,B ∈ GLn(Fp) ∪ {0} and rank(M) = 2nm. Clarifying, we set the convention that the

notation BiFpn (H[
m(Fpn)) will always be the tensor Bi(H[

m(Fpn)) where the chosen basis gives the

slices in (4.2). Also, BiFp(H
[
m(Fpn)) will always be the tensor Bi(H[

m(Fpn)) where the chosen basis

takes the basis of (4.2) and blows the entries up into GLn(Fp) ∪ {0} using the process outlined in

§2.4 to give slices as in (4.3).

92

Furthermore, given a quotient G of H[
m(Fpn), there is a choice of basis such that for each

k ∈ {1, . . . ,dimFp(G
′)}, BiFp(G)∗∗k is in the Fp-linear span of {BiFp(H

[
m(Fpn))∗∗k}k∈{1,...,2n}. Con-

sidering the dimension and rank of M , the following proposition is immediate.

Proposition 4.4.1.1. Suppose G is a quotient of the genus 2 flat group H[
m(Fpn) such that G is

not also a quotient of a genus 1 group. Considering any M = BiFp(G)∗∗k, we have

• n = rows(M)− rank(M),

• m =
rank(M)

2n
.

That is, given an indecomposible group G which is a quotient of a genus 2 flat group, a

canonical flat group it is a quotient of can be recovered from Bi(G).

4.4.2 Writing Bi(G) as potential Fq blocks

Given G, a centrally indecomposible quotient of a flat genus 2 group by a central subgroup,

we first determine what flat genus 2 group G is a quotient of, if indeed it is a quotient of a flat genus

2 group (§4.4.1). Picking any fixed representation of Fpn as Fp[x]/(a(x)), we want to find a Fp-basis

of Bi(G) such that each slice BiFp(G)∗∗k is a linear combination of slices
∑2n

`=1 α`BiFp(H
[
m(Fpn))∗∗`,

where each BiFp(H
[
m(Fpn))∗∗` has the structure established above (4.3). As G need only be defined

over Fp, and noting the nice block structure of BiFp(H
[
m(Fpn)), we will next attempt to write the

slices BiFp(G)∗∗k similarly.

While it is certainly plausible that the following results hold for m > 1, the proofs are not

immediate generalizations, so we now restrict to the case m = 1. In particular, we would like to

find a Fp-basis for Bi(G) such that for every k,

BiFp(G)∗∗k =

0 Ak Bk

−ATk 0 0

−BT
k 0 0

where Ak, Bk ∈ GLn(Fp) ∪ {0}.

93

Proposition 4.4.2.1. Given any Mα,Mβ ∈
{

2n∑
k=1

γkBiFp(H
[
1(Fpn))∗∗k : γ ∈ F2n

p \ 02n

}
, there is a

Fp-change of basis in H[
1(Fpn)/Z(H[

1(Fpn)) such that either:

(1) Bα = Bβ = 0 and Aα = In, or

(2) Aα = Bβ = In and Bα = Aβ = 0.

Furthermore, letting G be a quotient of H[
1(Fpn) by a central subgroup, there is a change of

basis in G/Z(G) such that for each k ∈ {1, . . . ,dimFp(G
′)},

BiFp(G)∗∗k =

0 Ak Bk

−ATk 0 0

−BT
k 0 0

 .

And if G is not a quotient of a genus 1 group, then there is a change of basis in G′ causing

A1 = B2 = In and B1 = A2 = 0.

Proof. We will construct this basis change by performing only a few actions. First, we will use

Mα 7→ CMαC
T ,Mβ 7→ CMαC

T , where

C =

C1

CT2

CT3

 .

Then

CMαC
T =

0 C1AαC2 C1BαC3

−(C1AαC2)T

−(C1BαC3)T
0

 . (4.4)

As this transformation is always performed on both Mα and Mβ, we will drop subscripts and write

M 7→ CMCT . Second, we will perform the row/column operations (as explained in §2.4) of swap-

ping, adding one to another, and subtracting one from another. Even more, as we want to preserve

the fact that each block is in GLn(Fp) ∪ {0}, we will actually perform them on rows/columns of

94

blocks rather than individual rows/columns. As such, all references to rows/columns, i.e., “column

2,” refer to blocks of rows/columns, i.e., “the 2nd column of blocks.”

We first force Bα = 0. If Aα = 0, swap rows/columns 2 and 3. Then

(1) Perform M 7→ CMCT where C1 = In, C2 = A−1
α , C3 = In. After this change of basis,

Aα = In.

(2) If Bα 6= 0, perform M 7→ CMCT where C1 = In, C2 = In, C3 = B−1
α . After this change of

basis, Bα ∈ {0, In}.

(3) If Bα 6= 0, subtract row/column 2 from row/column 3. Then Mα is in the desired form.

Note that these operations also affected Aβ and Bβ, but did not affect the block structure. If

Bβ = 0, we have found a basis change which satisfies the proposition. Assuming Bβ 6= 0, we

continue. If Aβ 6= 0, next force Aβ = 0 by

(1) Perform M 7→ CMCT where C1 = In, C2 = In, C3 = B−1
β Aβ. After this change of basis

Bβ becomes the same as Aβ while Mα is unaffected.

(2) Subtract column 3 from column 2. After this change of basis, Aβ = 0 and Bβ 6= 0 while

Mα is still in the desired form.

Finally scale Bβ and force it to become In by performing M 7→ CMCT , where C1 = In, C2 =

In, C3 = B−1
β . This finishes the proof of the first statement of the proposition.

Now let G be a quotient of H[
1(Fpn) by a central subgroup. Recalling that there is a change of

basis in G/Z(G) which causes every BiFp(G)∗∗k to be a linear combination
∑2n

`=1 αkBiFp(H
[
1(Fpn))∗∗`

and noting that no shuffles of slices were used in the argument above, the following fact is immediate.

For any two M1,M2 ∈ {BiFp(G)∗∗k : 1 ≤ k ≤ dimFp(G
′)}, there is a change of basis in G/Z(G)

such that

(M1,M2) ∈

0 In 0

−In 0 0

0 0 0

 ,

0 0 In

0 0 0

−In 0 0

 ,

0 In 0

−In 0 0

0 0 0

 ,

0 A 0

−AT 0 0

0 0 0

.

95

Even more, we were careful in the argument above to ensure that every operation respected the

block structure of every matrix in {BiFp(H
[
1(Fpn))∗∗k : 1 ≤ k ≤ 2n}, so we actually get that there

is a change of basis in G/Z(G) such that for each k ∈ {1, . . . ,dimFp(G
′)},

BiFp(G)∗∗k =

0 Ak Bk

−ATk 0 0

−BT
k 0 0

 ,

where A1 = In and B1 = 0. If there exists k such that Bk 6= 0, there is, by the argument above,

a change of basis which preserves BiFp(G)∗∗1 (and the block form of every other slice) which turns

BiFp(G)∗∗k into
0 0 In

0 0 0

−In 0 0

 .
Changing basis in G′ by swapping slice 2 with slice k completes the desired change of basis in the

second statement of the proposition.

On the other hand, if Bk = 0 for all k, then G is a quotient of the genus 1 group (defined

over Fpn)

Gp

0 1 0

−1 0 0

0 0 0

 ∼= H1(Fpn)× Fpn ,

where H1(Fpn) is defined in Example 2.5.2.1.

Having proved that our desired basis change exists, we now need that the basis change can

be found efficiently. After picking any basis, we first transform the basis so the first two slices

{BiFp(G)∗∗k}k=1,2 have A1 = B2 = In and B1 = A2 = 0. Then we construct and solve a system of

linear equations to find a basis change which forces every slice to have the desired block form while

preserving the first two slices. We believe transforming the first two slices into the desired canonical

form is always possible via fairly straightforward row/column reduction (see Conjecture 4.4.2.5), so

96

we next focus on showing the basis change transforming the remaining slices into block form can

be found via a system of linear equations.

To transform slices k = 3, . . . ,dimFp(G
′) into the desired block form, we first calculate the

stabilizer of the ordered pair
(
BiFp(G)∗∗1,BiFp(G)∗∗2

)
. Then we note that only a restricted class of

basis changes can affect the block form of the remaining slices. Finally, we use the restricted basis

change format to construct a system of linear equations to find an appropriate basis change.

Consider the ordered pair of matrices

P =
(
BiFp(G)∗∗1,BiFp(G)∗∗2

)
=

0 In 0

−In 0 0

0 0 0

 ,

0 0 In

0 0 0

−In 0 0

 .

Proposition 4.4.2.2. The stabilizer of P under simultaneous change of basis is

Stab(P) =

D E F

0 D−T 0

0 0 D−T

 : D ∈ GLn(Fp), E, F ∈Mn×n(Fp), DET = EDT , DF T = FDT

.

Proof. Looking at P acted on by an arbitrary matrix R ∈ GL3n(Fp) by P 7→ RPRT , we see for the

first matrix of P that
D11 D12 D13

D21 D22 D23

D31 D32 D33

0 In 0

−In 0 0

0 0 0

D11 D12 D13

D21 D22 D23

D31 D32 D33

T

=

D11D

T
12 −D12D

T
11 D11D

T
22 −D12D

T
21 D11D

T
32 −D12D

T
31

D21D
T
12 −D22D

T
11 D21D

T
22 −D22D

T
21 D21D

T
32 −D22D

T
31

D31D
T
12 −D32D

T
11 D31D

T
22 −D32D

T
21 D31D

T
32 −D32D

T
31

 .
As we want R ∈ Stab(P), we much have

Di1D
T
i2 = Di2D

T
i1, i = 1, 2, 3, (4.5)

Di1D
T
32 = Di2D

T
31, i = 1, 2, 3, (4.6)

D11D
T
22 = In +D12D

T
21. (4.7)

97

Similarly, for the other matrix in P , we have
D11 D12 D13

D21 D22 D23

D31 D32 D33

0 0 In

0 0 0

−In 0 0

D11 D12 D13

D21 D22 D23

D31 D32 D33

T

=

D11D

T
13 −D13D

T
11 D11D

T
23 −D13D

T
21 D11D

T
33 −D31D

T
31

D21D
T
13 −D23D

T
11 D21D

T
23 −D23D

T
21 D21D

T
33 −D23D

T
31

D31D
T
13 −D33D

T
11 D31D

T
23 −D33D

T
21 D31D

T
33 −D33D

T
31

 .

Again we get equations, which are

Di1D
T
i3 = Di3D

T
i1, i = 1, 2, 3, (4.8)

Di1D
T
23 = Di3D

T
21, i = 1, 2, 3, (4.9)

D11D
T
33 = In +D13D

T
31. (4.10)

Noting that each block is itself a n× n matrix, where for example

Dij =

(dij)11 (dij)12 · · · (dij)1n

(dij)21 (dij)22 · · · (dij)2n

...
...

...

(dij)n1 (dij)n2 · · · (dij)nn

,

we define the vectors

(dij)k· := 〈(dij)k1, (dij)k2, . . . , (dij)kn〉,

(dij)·k := 〈(dij)1k, (dij)2k, . . . , (dij)nk〉.

With this notation, we can convert our matrix equations into vector equations. In particular, we

98

get the equations

(di1)k· · (di2)`· = (di1)`· · (di2)k·, i = 1, 2, 3, (4.11)

(di1)k· · (d32)`· = (di2)k· · (d31)`·, i = 1, 2, 3, (4.12)

(d11)k· · (d22)`· = (d12)k· · (d21)`· + δk`, (4.13)

(di1)k· · (di3)`· = (di1)`· · (di3)k·, i = 1, 2, 3, (4.14)

(di1)k· · (d23)`· = (di3)k· · (d21)`·, i = 1, 2, 3, (4.15)

(d11)k· · (d33)`· = (d13)k· · (d31)`· + δk`. (4.16)

Notating column i by Ci, we show D32 = 0. In order to show a contradiction, consider that

if (d32)11 6= 0, then we can perform the column operation where we set

C1 ← (d32)11C1 + (d32)12C2 + · · ·+ (d32)1nCn − ((d31)11Cn+1 + (d31)12Cn+2 + · · · (d31)1nC2n).

By Equation (4.12), every row of column 1 will be 0. This contradicts the fact that R has full rank,

so we have (d32)11 = 0.

This same argument but setting

Ck ← (d32)11C1 + (d32)12C2 + · · ·+ (d32)1nCn − ((d31)11Cn+1 + (d31)12Cn+2 + · · · (d31)1nC2n)

gives (d32)1k = 0 for k ∈ {1, . . . , n} and (d31)1k = 0 for k ∈ {n+ 1, . . . , 2n}. To show the remaining

rows of D32, D31 are 0, we use the same argument where the coefficients are from row `. That is,

the column operations

Ck ← (d32)`1C1 + (d32)`2C2 + · · ·+ (d32)`nCn − ((d31)`1Cn+1 + (d31)`2Cn+2 + · · · (d31)`nC2n)

give (d32)`k = 0 for k ∈ {1, . . . , n} and (d31)`k = 0 for k ∈ {n+ 1, . . . , 2n}.

Similarly, using Equation 4.15 and the column operations

Ck ← (d23)`1C1 + (d23)`2C2 + · · · (d23)`nCn − ((d21)`1Cn+1 + (d21)`2 + · · ·+ (d21)`nC2n),

we get D21 = D23 = 0.

99

Substituting these known zero blocks into our matrix equations causes (4.7) to become

D11D
T
22 = In, so D22 = D−T11 . Similarly, (4.10) becomes D11D

T
33 = In, so D33 = D−T11 .

Finally, the added restrictions that D11D
T
12 and D11D

T
13 are symmetric come from (4.5)

and (4.8) where i = 1. Thus setting D := D11, E := D12, F := D13, we have

Stab(P) ⊆

D E F

0 D−T 0

0 0 D−T

 : D ∈ GLn(Fp), E, F ∈Mn×n(Fp), DET = EDT , DF T = FDT

.

It is easy to verify that any such matrix is, in fact, in Stab(P), so the subset is an equality.

Looking at the action of a matrix from Stab(P) on an arbitrary skew-symmetric matrix, we

see
D E F

0 D−T 0

0 0 D−T

G A B

−AT H J

−BT −JT L

DT 0 0

ET D−1 0

F T 0 D−1

 =

(∗) DAD−1 + EHD−1 − FJTD−1 DBD−1 + EJD−1 + FLD−1

(∗∗) D−THD−1 D−TJD−1

(∗∗) −D−TJTD−1 D−TLD−1

 ,
where (∗∗) are the necessary entries for the matrix to be skew-symmetric and

(∗) = DGDT − EATDT − FBTDT +DAET + EHET − FJTET +DBF T + EJF T + FLF T .

Noting that the (2, 2), (2, 3), (3, 2), (3, 3) blocks cannot change between zero and non-zero, if the

skew-symmetric matrix is a slice of BiFp(G) where G is a quotient of H[
1(Fpn) by a central subgroup,

then we must already have H = J = L = 0. Acting on a slice BiFp(G)∗∗k by an element of Stab(P),

we have

100

D E F

0 D−T 0

0 0 D−T

Gk Ak Bk

−ATk 0 0

−BT
k 0 0

DT 0 0

ET D−1 0

F T 0 D−1

 =

DGkD

T +DAkE
T − EATkDT +DBkF

T − FBT
k D

T DAkD
−1 DBkD

−1

−D−TATkDT 0 0

−D−TBT
k D

T 0 0

 ,

We want to restrict the class of basis changes even further, so we can use the action on each Gk to

form a system of equations which is linear to build a basis change which makes every Gk = 0 while

preserving the block structure. First, observe that any basis change in Stab(P) can be decomposed

as
D E F

0 D−T 0

0 0 D−T

 =

D 0 0

0 D−T 0

0 0 D−T

In D−1E D−1F

0 In 0

0 0 In

 .
Observing that the action
D 0 0

0 D−T 0

0 0 D−T

Gk Ak Bk

−ATk 0 0

−BT
k 0 0

DT 0 0

0 D−1 0

0 0 D−1

 =

DGkD

T DAkD
−1 DBkD

−1

−D−TATkDT 0 0

−D−TBT
k D

T 0 0

cannot affect whether or not Gk is zero, it suffices to consider basis changes of form

In E F

0 In 0

0 0 In

 : E,F ∈Mn×n(Fp) are symmetric

.

101

Investigating this action, we see
In E F

0 In 0

0 0 In

Gk Ak Bk

−ATk 0 0

−BT
k 0 0

In 0 0

ET In 0

F T 0 In

 =

Gk − EATk − FBT

k +AkE
T +BkF

T Ak Bk

−ATk 0 0

−BT
k 0 0

 ,
so setting

0 = Gk − EATk − FBT
k +AkE

T +BkF
T , (4.17)

0 = E − ET , (4.18)

0 = F − F T (4.19)

generates a system of equations which is linear in the entries of E,F . And by Proposition 4.4.2.1,

this system of linear equations will have a solution if G is, in fact, a quotient of H[
1(Fpn) by a central

subgroup. Even more, note that the actions by
In E F

0 In 0

0 0 In

 and

DT 0 0

0 D−1 0

0 0 D−1

cannot affect whether or not Ak, Bk are full rank, so we must also have Ak, Bk ∈ GLn(Fp) ∪ {0}.

This leads to the following proposition.

Proposition 4.4.2.3. Given BiFp(G) where (BiFp(G)∗∗1,BiFp(G)∗∗2) = P , finding a basis change

which preserves the first two slices while transforming the remaining slices to be

BiFp(G)∗∗k =

0 Ak Bk

−ATk 0 0

−BT
k 0 0

such that Ak, Bk ∈ GLn(Fp) ∪ {0} for all k > 3 can be done in O(n7) time.

102

Proof. Using the equations (4.17), (4.18), (4.19) generates O(n3) equations in O(n2) variables. A

solution to these linear equations can be found in O(n7) time by Gaussian elimination.

Remark 4.4.2.4. In theory, finding a basis for the solution space of the equations in Proposi-

tion 4.4.2.3 has the same complexity of matrix multiplication [65, 50]. Regardless, we proceed with

the slightly weaker result.

Summarizing, we have Algorithm 4.1.

Function ConvertToBlockForm(BiFp(G)):

Input: BiFp(G) where any Fp-basis has been chosen

Output: BiFp(G) with a new basis such that for all k,

BiFp(G)∗∗k =

0 Ak Bk

−ATk 0 0

−BT
k 0 0

 ,

where Ak, Bk ∈ GLn(Fp) ∪ {0} and A1 = B2 = In, A2 = B1 = 0.

(1) Pick any slice, say BiFp(G)∗∗1, and use straightforward row/column reduction

to put it into block form where A1 = In and B1 = 0.

(2) Find a slice such that the final n columns are not all 0. Swap slices so this slice

is BiFp(G)∗∗2.

(3) Use row/column reduction to put BiFp(G)∗∗2 into block form with A2 = 0 and

B2 = In while preserving BiFp(G)∗∗1.

(4) Find a change of basis which forces the D11 block of every slice BiFP (G)∗∗k to

be 0 by generating and solving a system of O(n3) linear equations in O(n2)

variables.

Algorithm 4.1: Convert BiFp(G) to block form

While we have not fully proven that this O(n7)-time algorithm always succeeds, there is only

one small missing step, embodied in the following conjecture.

103

Conjecture 4.4.2.5. Step (3) of Algorithm 4.1 always succeeds; that is, it always puts BiFp(G)∗∗2

into the desired form.

Walking through the algorithm step by step, we note the following. Step (1) can be done

by straightforward row/column operations in O((3n)2(2n)) = O(n3) time. Step (2) can be done

O(n(3n)(2n)) = O(n3) time. Note that if no such slice exists and G is a quotient of H[
1(Fpn), then

G is also a quotient of a genus 1 group and isomorphism of G can be determined in polynomial

time by [49]. While we do not have a proof that our algorithm for step (3) always succeeds (see

Conjecture 4.4.2.5), the author implemented a O(n4)-time algorithm in Magma [17] which has

run successfully with no exceptions on tens of millions of random examples. Finally, we have by

Proposition 4.4.2.3 that step (4) can be performed in O(n7) time. (See Remark 4.4.2.4 for a possible

improvement to this step.)

4.4.3 Realizing G as an explicit quotient H[
m(Fq)/N

Given a centrally indecomposible group G which is a quotient of a flat genus 2 group, we

first determine what flat genus 2 group it is a quotient of (see §4.4.1). Since there is a basis for

Bi(G) such that each BiFp(G)∗∗k is a linear combination of slices in {BiFp(H
[
1(Fpn))∗∗k}k=1,...,2n, we

note that each slice BiFp(H
[
1(Fpn))∗∗k has a nice block structure, so we find a basis where each slice

BiFp(G) has the same nice block structure (see §4.4.2). Now fixing any representation of Fpn as

Fp[x]/(a(x)), we find a basis so each slice BiFp(G)∗∗k is a linear combination of the canonical slices

{BiFp(H
[
1(Fpn))∗∗k}.

Given BiFp(G) written in block form as

0 Ak Bk

−ATk 0 0

−BT
k 0 0

 : Ak, Bk ∈ GLn(Fp) ∪ {0}, 1 ≤ k ≤ dimFp(G
′)

,

we now transform the {Ak}∪{Bk} to form an embedding Fpn ↪→ GLn(Fp)∪{0}. After performing

a similar transformation on BiFp(H
[
1(Fpn)), we need only to determine a field isomorphism to write

104

each BiFp(G)∗∗k as an explicit linear combination
∑2n

`=1 α`BiFp(H
[
1(Fpn)∗∗`) at which point writing

G as a quotient of H[
1(Fpn) by an explicit central subgroup N is trivial.

Consider the set of nonzero blocks from the slices BiFp(G)∗∗k. Let

BG = {B : B ∈ {Ak, Bk} for some BiFp(G)∗∗k and B 6= 0}.

Fix any indexing BG = {BG
i }i=1,...,`, and define the tensor TBG by letting BG∗∗k = BG

k . That is,

form TBG by stacking blocks in BG to be the slices of TBG over Fp. Define Adj(BG) to be Adj(TBG)

(see Definition 4.4.1), where the basis of TBG has been chosen such that BG
k is the kth slice of the

tensor. As there is a choice of basis of TBG such that each slice of TBG is a linear combination of

slices from T
BH

[
1(Fpn) , we have Adj(BH[

1(Fpn)) ∼= R ⊆ Adj(BG). Consider (αu, α
T
v) ∈ R. By definition

of the adjoint, αuB
G
i = BG

i α
T
v ; so in particular, (BG

1)
−1
αuB

G
1 = αTv , and

αuB
G
i = BG

i α
T
v (4.20)

αuB
G
i (BG

1)
−1

= BG
i α

T
v (BG

1)
−1

(4.21)

αu(BG
i (BG

1)
−1

) = BG
i ((BG

1)
−1
αuB

G
1)BG

1
−1

(4.22)

αu(BG
i (BG

1)
−1

) = (BG
i (BG

1)
−1

)αu. (4.23)

That is, BG
i (BG

1)
−1

commutes with every αu ∈ Adj(BH[
1(Fpn))|U , which leads us to the following

proposition.

Proposition 4.4.3.1. Suppose G is a quotient of the genus 2 flat group H := H[
1(Fpn) by a central

subgroup and BiFp(G) is written in block form as

BiFp(G)∗∗k =

0 Ak Bk

−ATk 0 0

−BT
k 0 0

 : Ak, Bk ∈ GLn(Fp) ∪ {0}, 1 ≤ k ≤ dimFp(G
′)

.

Then {BH
i (BH

1)−1 : BH
i , B

H
1 ∈ BH} generates an embedding of Fpn in GLn(Fp)∪{0} and {BG

i (BG
1)−1 :

BG
i , B

G
1 ∈ BG} generates a subfield of Fpn.

Before proving this proposition, we need the following lemma; we thank Nathaniel Thiem for

its proof.

105

Lemma 4.4.3.2. Embed F×pn into GL := GLn(Fp). Let F be the image of the embedding. Then

the centralizer CGL(F) = F .

Proof (N. Thiem). Let ψ : F×pn ↪→ GLn(Fp) be an embedding of Fpn into GL := GLn(Fp), and let

F := ψ(Fpn) be the image of the embedding.

This result follows by [54, II.1.6, IV.2.5–IV.2.7]. To show why these results apply in our

situation, we adopt the notation of [54] for this proof only. We have

|CGL(F)| =
∏
f∈Φ

aµ(f)(qf).

In our context, |Φ| = 1 as the characteristic polynomial of ψ(x) is irreducible (it is the irreducible

polynomial used to define Fpn = Fp[x]/(ψ(x))). Let λ := µ(f) for the unique f ∈ Φ. Then

|CGL(L)| = aλ(pn) = (pn)|λ|+2n(λ)
∏
i≥1

ϕmi(λ)(p
−n). (4.24)

Again since f is irreducible, the partition λ is trivial; thus |λ| = 1, n(λ) =
∑1

i=1(i − 1)λi =

(1 − 1)λ1 = 0, and
∏
i≥1 ϕmi(λ)(p

−n) = ϕ1(p−n) = (1 − p−n). Substituting these values back

into (4.24), we get

|CGL(L)| = (pn)1+0(1− p−n) = pn − 1.

Since F ⊆ CGL(F), we have, by cardinality considerations only, that F = CGL(F).

Now we are ready to prove Proposition 4.4.3.1.

Proof. First we show {BH
i (BH

1)−1 : BH
i , B

H
1 ∈ BH} generates an embedding of F×pn in GLn(Fp).

Note that there is a shuffle of the canonical slices of TBH (over Fp) such that TBH forms two

copies of the block of 1 ∈ Fpn embedded into Fn×n×np via the procedure in §2.4.4. Thus F×pn ↪→

Adj(BH)|U ⊆ GLn(Fp). By a calculation identical to that of (4.20)–(4.23) but with blocks from

BH , we have {BH
i (BH

1)−1} is contained in the centralizer of Adj(BH)|U . By Lemma 4.4.3.2, this

centralizer can have cardinality no larger than pn − 1. Note also that the canonical slices of BH

contain n linearly independent n×n matrices; let {BH
1 , . . . , B

H
n } be the linearly independent slices.

As BH
1 ∈ GLn(Fp), we also have {BH

1 (BH
1)−1, . . . , BH

n (BH
1)−1} are still linearly independent. As

106

nonzero linear combinations of n linearly independent matrices generate pn − 1 matrices, the size

of the centralizer of Adj(BH)|U in GLn(Fp) is exactly pn − 1. Thus

〈BH(BH
1)−1〉 = 〈BH

1 (BH
1)−1, . . . , BH

n (BH
1)−1〉 ∼= Fpn ↪→ GLn(Fp) ∪ {0}.

Turning now to 〈BG(BG
1)−1〉, we have by the calculation in (4.20)–(4.23) that BG

i (BG
1)−1

commutes with every αu ∈ Adj(BH)|U for every i; that is, {BG
i (BG

1)−1} is contained in the central-

izer of Adj(BH)|U in GLn(Fp) and {BG(BG
1)−1} is contained in an embedding of F×pn in GLn(Fp).

Thus, generating 〈BG(BG
1)−1〉 ⊆ GLn(Fp)∪ {0} as a subring (so allowing both linear combinations

and powers) generates a subfield of the embedding of Fpn .

Note that we already have In ∈ BG, so there is a shuffle of B such that In = BG
1 . Thus

BG already generates a subfield of Fpn . Also, 〈BH(BH
1)−1〉 ∼= Fpn . Solve field isomorphism to

embed ϕ : 〈BG〉 ↪→ 〈BH(BH
1)−1〉, where ϕ ∈ GLn(Fp). Such an isomorphism can be computed in

polynomial time [48]. Noting that
ϕ−1 0 0

0 (AH1)T 0

0 0 (AH1)T

0 Ak Bk

−ATk 0 0

−BT
k 0 0

ϕ 0 0

0 A−1
1 0

0 0 A−1
1

 =

0 ϕ−1(Ak) ·AH1 ϕ−1(Bk) ·AH1

−(ϕ−1(Ak) ·AH1)T 0 0

−(ϕ−1(Bk) ·AH1)T 0 0

 ,

we can efficiently transform our already chosen basis of Bi(G) so each slice BiFp(G)∗∗k is a linear

combination of slices from {BiFp(H
[
1(Fpn))∗∗k}k=1,...,2n. Consider the 1×1×1-tensor T over Fpn with

entry T111 = 1, and recall from §2.4 that after writing T over Fp using the established convention

that each slice has a 1 in a unique location of the top row. Thus it is trivial to write each slice

BiFp(G)∗∗k as
∑2n

`=1 α`BiFp(H
[
1(Fpn)). Extend {BiFp(G)∗∗k}k=1,...,dimFp (G′) by sequentially adding

linearly independent matrices from {BiFp(H
[
1(Fpn))∗∗k}k=1,...,2n until there are 2n matrices. These

added matrices form a basis in Z(H[
1(Fpn)) for N where G ∼= H[

1(Fpn)/N .

107

4.4.4 Determining if H[
m(Fq)/N1

∼= H[
m(Fq)/N2

Given two groups G1, G2 which are quotients of flat genus 2 groups, we first determine a

canonical flat genus 2 group of which it is a quotient (§4.4.1). Then if the Gi are quotients of

H[
1(Fq), we write the Gi explicitly as H[

1(Fq)/Ni (§4.4.3). Given two groups G1
∼= H[

1(Fq)/N1,

G2
∼= H[

1(Fq)/N2 written as explicit quotients by central subgroups, it is possible that G1
∼= G2 but

N1 6= N2, so our isomorphism test is not yet complete. As is the case in [49] for groups of genus 1,

we conjecture the following.

Conjecture 4.4.4.1. Let G1
∼= H[

1(Fq)/N1 and G2
∼= H[

1(Fq)/N2 where the Ni are central sub-

groups. Then G1
∼= G2 if and only if there is ϕ ∈ Aut(H[

1(Fq)) such that ϕ(N1) = N2.

Assuming Conjecture 4.4.4.1, we then need only to find Aut(H[
1(Fpn)) to finish our isomor-

phism test for quotients of H[
1(Fpn). To this end, we have the following.

Proposition 4.4.4.2 ([12]). Aut
(
H[

1(Fpn)
) ∼= HomFp

(
F3
pn ,F2

pn
)
oΨIsom

(
Bi(H[

1(Fpn))
)
, where for

µ ∈ HomFp
(
F3
pn ,F2

pn
)

and (f, f̃) ∈ ΨIsom
(
Bi(H[

1(Fpn))
)
, µ(f,f̃) = f−1µf̃ .

Conjecture 4.4.4.3. ΨIsom(Bi(H[
1(Fpn))) = (Sp(2,Fpn)oGL2(Fp))oGal(Fpn/Fp), so in light of

Proposition 4.4.4.2,

Aut(F [1(Fpn)) = HomFp(F3
pn ,F2

pn)o ((Sp(2,Fpn)oGL2(Fp))oGal(Fpn/Fp)).

Regardless of the validity of Conjecture 4.4.4.3, generators for ΨIsom(Bi(Fpn)) can be found

in polynomial time.

Theorem 4.4.4.4 ([20, Theorem 6.5]). There is a deterministic algorithm that, given an alternat-

ing Fq-bilinear map b : Fdq×Fdq � F2
q of genus 2, constructs generators for ΨIsom(b). The algorithm

is polynomial time if either (1) q is bounded or (2) the number of pairwise pseudo-isometric inde-

composible summands of the input of the summands of the input bilinear maps is bounded.

Hence, we have by combining Theorem 4.4.4.4 and Proposition 4.4.4.2 that there is a de-

terministic algorithm which constructs generators for Aut(H[
1(FPn)). Thus, assuming Conjec-

108

ture 4.4.4.1, we can test if H[
1(FPn)/N1

∼= H[
1(FPn)/N2 in polynomial time. Combining with

Theorem E, we get the following conjecture.

Conjecture 4.4.4.5 (Theorem F). Given two groups G1, G2 which are quotients of the centrally

indecomposible genus 2 group H[
1(Fq), the polynomial time algorithm outlined in this chapter to

determine whether G1
∼= G2 always succeeds.

Recalling the missing pieces to this conjecture, we remind the reader that the only missing

pieces to this conjecture are Conjectures 4.4.2.5 and 4.4.4.1. Conjecture 4.4.2.5 seems to be true

based on tens of millions of random examples. Furthermore, we have found no evidence showing

Conjecture 4.4.4.1 does not generalize to the more general case of all indecomposible genus 2 groups

via a slight generalization of the proof of the genus 1 case in [49].

4.5 Future work

In addition to the conjectures officially stated, we leave a few problems unaddressed. As

mentioned before Proposition 4.4.2.1, generalizing the arguments to H[
m(Fq) for m > 1 is not

immediate, so we leave the m > 1 case as an open problem. It seems to be the case that a partial

generalization of Proposition 4.4.2.1 does hold; in particular, there seems to be a basis change

such that any two linear combinations Mα,Mβ ∈
{∑2n

k=1 γkBiFp(H
[
m(Fpn))∗∗k : γ ∈ F2n

p \ 02n
}

can

be written such that (Aα, Bα) = (In, 0) and (Aβ, Bβ) ∈ {(0, In), (Aβ, 0)} (see (4.3)). However,

considering any other Mδ, it is unclear if there is a basis such that Mα,Mβ are in the desired form

and Aδ is well-defined, i.e., if each of the blocks in the position of Aδ of Mδ is any fixed block.

Continuing the possible generalization, we conjecture the following generalization of Propo-

sition 4.4.2.2. Let

L =

In 0 · · · 0

0 In · · · 0

...
...

. . .
...

0 0 · · · In

, P =

0nm×nm L 0nm×n

−LT 0nm×nm 0nm×n

 ,
0nm×nm 0nm×n L

−LT 0nm×n 0nm×nm

 .

109

Then we conjecture that

Stab(P) =

D E1 E2 · · · Em+1

D E2 E3 · · · Em+2

. . .
...

...
...

...

D Em Em+1 · · · E2m

D−T

D−T

. . .

D−T

:
D ∈ GLn(Fp), Ei ∈Mn×n(Fp),

AETi = EiA
T

.

The proof in the case of m = 2 is straightforward generalization of the m = 1 case; however, it

again requires writing the formulas in coordinates. For the case of m > 2, it is easy to show these

matrices are contained in Stab(P), but whether or not this containment is strict is not obvious.

Beyond that, the case of quotients of sloped genus 2 groups by central subgroups was left

unaddressed. In the sloped case, even the question of whether there exists a nice block form into

which any two tensor slices can be put is unclear.

Even given algorithms to solve the cases of quotients of sloped or flat groups by central

subgroups, the question of quotients of general genus 2 groups also needs to be addressed. We

hope the general case (no restriction to centrally indecomposible groups) follows from the ideas

developed in [20, Section 6], but we leave this problem open as well.

Bibliography

[1] Sergei I. Adian. Algorithmic unsolvability of problems of recognition of certain properties of
groups. (Russian). Doklady Akademii Nauk SSSR, 103:533–535, 1955.

[2] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of Mathematics,
2:781–793, 2002.

[3] Vikraman Arvind and Jacobo Torán. Solvable group isomorphism is (almost) in NP ∩ coNP.
ACM Transactions on Computation Theory, 2(2):1–22, 2011.

[4] László Babai. Trading group theory for randomness. In 17th Annual ACM Symposium on
Theory of Computing, pages 421–429. ACM, 1985.

[5] László Babai. Automorphism groups, isomorphism, reconstruction. In Ronald L. Graham,
Martin Grötschel, and László Lovász, editors, Handbook of Combinatorics (Vol. 2), pages
1447–1540. MIT Press, Cambridge, MA, USA, 1995.

[6] László Babai. Graph isomophism in quasipolynomial time. arXiv:1512.03547 [cs.DS], 2015.

[7] László Babai, Paolo Codenotti, Joshua A. Grochow, and Youming Qiao. Code equivalence and
group isomorphism. In Proceedings of the Twenty-Second Annual ACM–SIAM Symposium
on Discrete Algorithms (SODA11), pages 1395–1408, Philadelphia, PA, 2011. SIAM.

[8] László Babai, Paolo Codenotti, and Youming Qiao. Polynomial-time isomorphism test for
groups with no abelian normal subgroups. In Artur Czumaj, Kurt Mehlhorn, Andrew Pitts,
and Roger Wattenhofer, editors, Automata, Languages, and Programming, ICALP, pages 51–
62, Berlin, Heidelberg, 2012. Springer.

[9] László Babai and Shlomo Moran. Arthur-Merlin games: A randomized proof system, and a
hierarchy of complexity classes. Journal of Computer and System Sciences, 36(2):254–276,
1988.

[10] László Babai and Youming Qiao. Polynomial-time isomorphism test for groups with abelian
Sylow towers. In Christoph Dürr and Thomas Wilke, editors, 29th International Symposium
on Theoretical Aspects of Computer Science (STACS 2012), volume 14 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 453–464, Dagstuhl, Germany, 2012. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[11] László. Babai and Endre Szemerédi. On the complexity of matrix group problems I. In
Proceedings of the 25th Annual Symposium on Foundations of Computer Science, SFCS ’84,
pages 229–240, Washington, DC, 1984. IEEE Computer Society.

111

[12] Reinhold Baer. Groups with abelian central quotient group. Transactions of the American
Mathematical Society, 44(3):357–386, 1938.

[13] Genrich Belitskii, Ruvim Lipyanski, and Vladimir V. Sergeichuk. Problems of classifying
associative or Lie algebras and triples of symmetric or skew-symmetric matrices are wild.
Linear Algebra and Its Applications, 407:249–262, 2005.

[14] Jon Louis Bentley and Andrew Chi-Chih Yao. An almost optimal algorithm for unbounded
searching. Information Processing Letters, 5(3):82–87, 1976.

[15] Simon R. Blackburn, Peter M. Neumann, and Geetha Venkataraman. Enumeration of Finite
Groups. Cambridge Tracts in Mathematics. Cambridge University Press, 2007.

[16] Ravi B. Boppana, Johan H̊astad, and Stathis Zachos. Does co-NP have short interactive
proofs? Information Processing Letters, 25(2):127–132, 1987.

[17] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user
language. Journal of Symbolic Computation, 24(3-4):235–265, 1997.

[18] Mike Boyle. Open problems in symbolic dynamics. Contemporary Mathematics, 469:69–118,
2008.

[19] Mike Boyle. Personal communication, 2018.

[20] Peter Brooksbank, Joshua Maglione, and James B. Wilson. A fast isomorphism test for groups
whose Lie algebra has genus 2. Journal of Algebra, 473:545–590, 2017.

[21] Heiko Dietrich and James B. Wilson. Polynomial-time isomorphism testing of groups of most
finite orders. arXiv:1806.08872 [math.GR], 2018.

[22] Rafael M. Frongillo. Optimal state amalgamation is NP-hard. Ergodic Theory and Dynamical
Systems, 39(7):1857–1869, 2019.

[23] Hana Galperin and Avi Wigderson. Succinct representations of graphs. Information and
Control, 56(3):183–198, 1983.

[24] The GAP Group. GAP—Groups, Algorithms, and Programming, Version 4.10.2, 2019.
(https://www.gap-system.org).

[25] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. Journal of the ACM, 38(3):690–728,
1991.

[26] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[27] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive proof
systems. In 18th Annual ACM Symposium on Theory of Computing, pages 56–68. ACM,
1986.

[28] Joshua A. Grochow and Youming Qiao. Polynomial-time isomorphism test of groups that are
tame extensions. In 26th International Symposium on Algorithms and Computation (ISAAC),
Springer Lecture Notes in Computer Science 9472, pages 578–589, 2015.

112

[29] Joshua A. Grochow and Youming Qiao. Isomorphism problems for tensors, groups, and cubic
forms: completeness and reductions. arXiv:1907.00309 [cs.CC], 2019.

[30] Gustav A. Hedlund. Endomorphisms and automorphisms of the shift dynamical system.
Mathematical Systems Theory, 3(4):320–375, 1969.

[31] Harald Andrés Helfgott, Jitendra Bajpai, and Daniele Dona. Graph isomorphisms in quasi-
polynomial time. arXiv:1710.04574 [math.GR], 2017.

[32] Derek Holt, Bettina Eick, and Eamonn O’Brien. Handbook of Computational Group Theory.
Chapman & Hall, Boca Raton, 2005.

[33] Shui-Hung Hou. Classroom note: A simple proof of the Leverrier–Fadeev characteristic poly-
nomial algorithm. SIAM Review, 40(3):706–709, 1998.

[34] David J. A. Howden. Computing Automorphism Groups and Isomorphism Testing in Finite
Groups. PhD thesis, The University of Warwick, 2012.

[35] Costas S. Iliopoulos. Computing in general abelian groups is hard. Theoretical Computer
Science, 41:81–93, 1985.

[36] I. Martin Isaacs. Finite Group Theory. American Mathematical Society, 2008.

[37] William M. Kantor and Eugene M. Luks. Computing in quotient groups. In Proceedings of the
Twenty-second Annual ACM Symposium on Theory of Computing, STOC ’90, pages 524–534,
New York, NY, USA, 1990. ACM.

[38] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller,
James W. Thatcher, and Jean D. Bohlinger, editors, Complexity of Computer Computations,
The IBM Research Symposia Series, pages 85–103, Boston, MA, 1972. Springer.

[39] Telikepalli Kavitha. Linear time algorithms for abelian group isomorphism and related prob-
lems. Journal of Computer and System Sciences, 73(6):986–996, 2007.

[40] Bruce Kitchens. Symbolic Dynamics: One-sided, Two-sided and Countable State Markov
Shifts. Springer, 1998.

[41] Morris S. Knebelman. Classification of Lie algebras. Annals of Mathematics, 36(1):46–56,
1935.

[42] Johannes Köbler, Uwe Schöning, and Jacobo Torán. The Graph Isomorphism Problem: Its
Structural Complexity. Birkhauser Verlag, Basel, Switzerland, Switzerland, 1993.

[43] Richard Ladner. On the structure of polynomial time reducibility. Journal of the ACM,
22(1):155–171, 1975.

[44] François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th
International Symposium on Symbolic and Algebraic Computation, ISSAC ’14, pages 296–303,
New York, NY, USA, 2014. ACM.

[45] François Le Gall. Efficient isomorphism testing for a class of group extensions. In Susanne
Albers and Jean-Yves Marion, editors, 26th International Symposium on Theoretical Aspects
of Computer Science, volume 3 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 625–636, Dagstuhl, Germany, 2009. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

113

[46] Urbain Le Verrier. Sur les variations séculaires des éléments des orbites pour les sept planétes
principales. Journal de Mathématiques, 5:220–254, 1840.

[47] Charles R. Leedham-Green and Susan McKay. The Structure of Groups of Prime Power Order.
London Mathematical Society monographs. Oxford University Press, 2002.

[48] Hendrik W. Lenstra, Jr. Finding isomorphisms between finite fields. Mathematics of
Computation, 56(193):329–347, 1991.

[49] Mark Lewis and James B. Wilson. Isomorphism in expanding families of indistinguishable
groups. Groups, Complexity, Cryptology, 4:73–110, 2012.

[50] Thomas Lickteig. The computational complexity of division in quadratic extension fields.
SIAM Journal on Computing, 16(2):278–311, 1987.

[51] Douglas Lind and Brian Marcus. An Introduction to Symbolic Dynamics and Coding. Cam-
bridge University Press, 1999.

[52] Eugene M. Luks. Computing in solvable matrix groups. In Proceedings of the 33rd Annual
Symposium on Foundations of Computer Science, pages 111–120, 1992.

[53] Eugene M. Luks. Permutation groups and polynomial-time computation. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, 11, 1993.

[54] Ian G. MacDonald. Symmetric Functions and Hall Polynomials. Oxford mathmatical mono-
graphs. Oxford University Press, second edition, 1995.

[55] Charles F. Miller. Decision problems for groups—survey and reflections. In Gilbert Baumslag
and Charles F. Miller, editors, Algorithms and Classification in Combinatorial Group Theory,
pages 1–59, New York, NY, 1992. Springer New York.

[56] Gary L. Miller. On the nlogn isomorphism technique (a preliminary report). In Proceedings of
the Tenth Annual ACM Symposium on Theory of Computing, STOC ’78, pages 51–58, New
York, NY, USA, 1978. ACM.

[57] Gary L. Miller. Graph isomorphism, general remarks. Journal of Computer and System
Sciences, 18(2):128–142, 1979.

[58] Peter Bro Miltersen and Vinodchandran N. Variyam. Derandomizing Arthur-Merlin games
using hitting sets. Computational Complexity, 14(3):256–279, 2005.

[59] Christos H. Papadimitriou and Mihalis Yannakakis. A note on succinct representations of
graphs. Information and Control, 71:181–185, 1985.

[60] Youming Qiao, Jayalal Sarma M.N., and Bangsheng Tang. On isomorphism testing of groups
with normal hall subgroups. In Thomas Schwentick and Christoph Dürr, editors, 28th
International Symposium on Theoretical Aspects of Computer Science (STACS 2011), vol-
ume 9 of Leibniz International Proceedings in Informatics (LIPIcs), pages 567–578, Dagstuhl,
Germany, 2011. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[61] Michael O. Rabin. Recursive unsolvability of group theoretic problems. Annals of Mathematics,
67(1):172–194, 1958.

114

[62] David J. Rosenbaum. Bidirectional collision detection and faster deterministic isomorphism
testing. arXiv:1304.3935 [cs.DS], 2013.

[63] David J. Rosenbaum. Breaking the nlogn barrier for solvable-group isomorphism. In
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1054–1073, 2013.

[64] Carla Savage. An O(n2) algorithm for abelian group isomorphism. Technical report, North
Carolina State University, Raleigh, NC, 1980.

[65] Arnold Schonhage. Equations solving in terms of computational complexity. In Proceedings
of the International Congress of Mathematics, pages 131–153, 1986.

[66] Tyler Schrock and Rafael Frongillo. Computational complexity of k-block conjugacy.
arXiv:1909.02627 [math.DS], 2019.

[67] Ákos Seress. Permutation Group Algorithms. Cambridge Tracts in Mathematics. Cambridge
University Press, 2003.

[68] Vladimir V. Sergĕıčuk. The classification of metabelian p-groups (Russian). In Matrix
Problems, pages 150–160. Akademiia Nauk Ukrainy SSR Institut Matematiki, Kiev, 1977.

[69] Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 2012.

[70] Maciej M. Sys lo. The subgraph isomorphism problem for outerplanar graphs. Theoretical
Computer Science, 17(1):91–97, 1982.

[71] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

[72] Narayan Vikas. An O(n) algorithm for abelian p-group isomorphism and an O(n log n) algo-
rithm for abelian group isomorphism. Journal of Computer and System Sciences, 53(1):1–9,
1996.

[73] Fabian Wagner. On the complexity of group isomorphism. Technical report TR11-052, Elec-
tronic Colloquium on Computational Complexity (ECCC), 2011.

[74] Robert F. Williams. Classification of subshifts of finite type. Annals of Mathematics, 98(1):120–
153, 1973.

[75] James B. Wilson. Finding central decompositions of p-groups. Journal of Group Theory,
12:813–830, 2008.

[76] James B. Wilson. Decomposing p-groups via Jordan algebras. Journal of Algebra, 322(8):2642–
2679, 2009.

[77] James B. Wilson. Existence, algorithms, and asymptotics of direct product decompositions, I.
Groups Complexity Cryptology, 4:33–72, 2012.

[78] James B. Wilson. 2014 conference on Groups, Computation, and Geometry at Colorado State
University, co-organized by Peter Brooksbank, Alexander Hulpke, Tim Penttila, James B.
Wilson, and William M. Kantor. Personal communication, 2014.

	Introduction
	A non-technical introduction to isomorphism
	Summary of results
	Symbolic dynamics
	Finite group theory

	Organization

	Preliminaries
	Graph theory
	Computational complexity
	Asymptotic complexity
	Complexity classes
	Reductions and C-hard problems
	Decidability

	Symbolic dynamics
	Tensors
	Introduction
	Valence 3 tensors
	Symmetric and alternating tensors
	Writing a tensor over F-q as a tensor over F-p

	Finite group theory
	Background
	A brief introduction to genus 2 groups
	Group representation styles

	Conjugacy and recognition of shifts of finite type
	Overview
	Verification: testing a k-block map for conjugacy
	Irreducible case
	Reducible case

	Deciding k-block conjugacy
	Reducing representation size
	Edge shifts
	Recognizing shifts of finite type
	Discussion and future work
	Algorithms

	Determining isomorphism of quotients of genus 2 groups
	Overview
	Genus 2 groups
	Baer's correspondence
	Genus of a group
	Classification of indecomposible genus 2 groups

	Quotients of genus 2 groups by non-central subgroups
	Quotients of genus 2 flat groups by central subgroups
	Recovering the genus 2 group
	Writing Bi(G) as potential F-q blocks
	Realizing G as an explicit quotient H-flat/N
	Determining if H-flat/N is isomorphic to H-flat/M

	Future work

	 Bibliography

